Topology of Complements of Hyperplane Arrangements and Isomonodromic Deformations of Fuchsian Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 198-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider families of systems of first-order linear differential equations on complex linear spaces that represent the Cherednik variant of the Knizhnik–Zamolodchikov equations. For these families of equations, we prove a rigidity property with respect to a certain class of isomonodromic deformations; i.e., we show the absence of nontrivial special isomonodromic deformations with a movable divisor of singularities.
@article{TM_2009_267_a14,
     author = {V. P. Leksin},
     title = {Topology of {Complements} of {Hyperplane} {Arrangements} and {Isomonodromic} {Deformations} of {Fuchsian} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {198--203},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a14/}
}
TY  - JOUR
AU  - V. P. Leksin
TI  - Topology of Complements of Hyperplane Arrangements and Isomonodromic Deformations of Fuchsian Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 198
EP  - 203
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a14/
LA  - ru
ID  - TM_2009_267_a14
ER  - 
%0 Journal Article
%A V. P. Leksin
%T Topology of Complements of Hyperplane Arrangements and Isomonodromic Deformations of Fuchsian Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 198-203
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a14/
%G ru
%F TM_2009_267_a14
V. P. Leksin. Topology of Complements of Hyperplane Arrangements and Isomonodromic Deformations of Fuchsian Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 198-203. http://geodesic.mathdoc.fr/item/TM_2009_267_a14/

[1] Arnold V. I., “Koltso kogomologii gruppy krashenykh kos”, Mat. zametki, 5:2 (1969), 227–231 | MR | Zbl

[2] Brieskorn E., “Sur les groups de tresses”, Séminaire Bourbaki 1971/72, Lect. Notes Math., 317, Springer, Berlin, 1973, 21–44 | DOI | MR

[3] Klarès B., “Sur la monodromie des systèmes de Pfaff du type Fuchs sur $\mathbb P_m(\mathbb C)$”, Equations différentielles et systèmes de Pfaff dans le champ complexe, Lect. Notes Math., 712, Springer, Berlin, 1979, 293–324 | DOI | MR

[4] Leksin V. P., “Monodromy of Cherednik–Kohno–Veselov connections”, Differential equations and quantum groups, IRMA Lect. Math. and Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 255–268 | MR

[5] Orlik P., Solomon L., “Combinatorics and topology of complements of hyperplanes”, Invent. math., 56 (1980), 167–189 | DOI | MR | Zbl

[6] Orlik P., Terao H., Arrangements of hyperplanes, Springer, Berlin, 1992 | MR | Zbl

[7] Randell R., “Lattice-isotopic arrangements are topologically isomorphic”, Proc. Amer. Math. Soc., 107:2 (1989), 555–559 | DOI | MR | Zbl

[8] Veselov A. P., “On geometry of a special class of solutions to generalized WDVV equations”, Integrability: The Seiberg–Witten and Whitham equations (Edinburg, 1998), Gordon and Breach, Amsterdam, 2000, 125–135 | MR | Zbl