Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_267_a13, author = {S. Janeczko and Z. Jelonek}, title = {Diffeomorphisms {Preserving} {Symplectic} {Data} on {Submanifolds}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {182--197}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a13/} }
TY - JOUR AU - S. Janeczko AU - Z. Jelonek TI - Diffeomorphisms Preserving Symplectic Data on Submanifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 182 EP - 197 VL - 267 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_267_a13/ LA - en ID - TM_2009_267_a13 ER -
S. Janeczko; Z. Jelonek. Diffeomorphisms Preserving Symplectic Data on Submanifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 182-197. http://geodesic.mathdoc.fr/item/TM_2009_267_a13/
[1] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Dinamicheskie sistemy – 4, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 4, VINITI, M., 1985, 5–135 | MR
[2] Banyaga A., The structure of classical diffeomorphism groups, Math. and Appl, 400, Kluwer, Dordrecht, 1997 | MR | Zbl
[3] Belov-Kanel A., Kontsevich M., “Automorphisms of the Weyl algebra”, Lett. Math. Phys., 74 (2005), 181–199 | DOI | MR | Zbl
[4] Borel A., “Injective endomorphisms of algebraic varieties”, Arch. Math., 20 (1969), 531–537 | DOI | MR | Zbl
[5] Calabi E., “On the group of automorphisms of a symplectic manifold”, Problems in analysis, ed. R. Gunning, Princeton Univ. Press, Princeton, NJ, 1970, 1–26 | MR | Zbl
[6] Ekeland I., Hofer H., “Symplectic topology and Hamiltonian dynamics”, Math. Ztschr., 200 (1989), 355–378 | DOI | MR | Zbl
[7] Griffiths P., Harris J., Principles of algebraic geometry, J. Wiley Sons, New York, 1978 | MR | Zbl
[8] Hofer H. H. W., “Dynamics, topology and holomorphic curves”, Proc. Intern. Congr. Math., V. 1 (Berlin, 1998), Doc. Math., Extra vol., Univ. Bielefeld, Bielefeld, 1998, 255–280 | MR
[9] Janeczko S., Jelonek Z., “Linear automorphisms that are symplectomorphisms”, J. London Math. Soc., 69 (2004), 503–517 | DOI | MR | Zbl
[10] Janeczko S., Jelonek Z., “Characterization of diffeomorphisms that are symplectomorphisms”, Fund. math., 205:2 (2009), 147–160 | DOI | MR | Zbl
[11] Janeczko S., Jelonek Z., “Polynomial symplectomorphisms”, Bull. London Math. Soc., 40 (2008), 108–116 | DOI | MR | Zbl
[12] Jelonek Z., “Affine smooth varieties with finite group of automorphisms”, Math. Ztschr., 216 (1994), 575–591 | DOI | MR | Zbl
[13] Jelonek Z., “Affine automorphisms that are isometries”, Lin. Alg. and Appl., 364 (2003), 125–134 | DOI | MR | Zbl
[14] Łojasiewicz S., Introduction to complex analytic geometry, Birkhäuser, Basel, 1991 | MR
[15] McDuff D., Salamon D., Introduction to symplectic topology, 2nd ed., Oxford Univ. Press, New York, 1998 | MR | Zbl
[16] McDuff D., “A survey of the topological properties of symplectomorphism groups”, Topology, geometry and quantum field theory, Proc. 2002 Symp. in honour of G. Segal, ed. U. Tillmann, Cambridge Univ. Press, Cambridge, 2004, 173–193 | DOI | MR | Zbl
[17] Shestakov I. P., Umirbaev U. U., “The tame and the wild automorphisms of polynomial rings in three variables”, J. Amer. Math. Soc., 17 (2004), 197–227 | DOI | MR | Zbl
[18] Tsuchimoto Y., “Preliminaries on Dixmier conjecture”, Mem. Fac. Sci. Kochi Univ. A, 24 (2003), 43–59 | MR | Zbl
[19] Vaisman I., “Locally conformal symplectic manifolds”, Intern. J. Math. and Math. Sci., 8 (1985), 521–536 | DOI | MR | Zbl