Spacelike Surfaces in Anti de Sitter Four-Space from a~Contact Viewpoint
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 164-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the notions of $(S_\mathrm t^1\times S_\mathrm s^2)$-nullcone Legendrian Gauss maps and $S^2_+$-nullcone Lagrangian Gauss maps on spacelike surfaces in anti de Sitter 4-space. We investigate the relationships between singularities of these maps and geometric properties of surfaces as an application of the theory of Legendrian/Lagrangian singularities. By using $S^2_+$-nullcone Lagrangian Gauss maps, we define the notion of $S^2_+$-nullcone Gauss–Kronecker curvatures and show a Gauss–Bonnet type theorem as a global property. We also introduce the notion of horospherical Gauss maps which have geometric properties different from those of the above Gauss maps. As a consequence, we can say that anti de Sitter space has much richer geometric properties than the other space forms such as Euclidean space, hyperbolic space, Lorentz–Minkowski space and de Sitter space.
@article{TM_2009_267_a12,
     author = {S. Izumiya and D. Pei and M. C. Romero Fuster},
     title = {Spacelike {Surfaces} in {Anti} de {Sitter} {Four-Space} from {a~Contact} {Viewpoint}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {164--181},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a12/}
}
TY  - JOUR
AU  - S. Izumiya
AU  - D. Pei
AU  - M. C. Romero Fuster
TI  - Spacelike Surfaces in Anti de Sitter Four-Space from a~Contact Viewpoint
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 164
EP  - 181
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a12/
LA  - en
ID  - TM_2009_267_a12
ER  - 
%0 Journal Article
%A S. Izumiya
%A D. Pei
%A M. C. Romero Fuster
%T Spacelike Surfaces in Anti de Sitter Four-Space from a~Contact Viewpoint
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 164-181
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a12/
%G en
%F TM_2009_267_a12
S. Izumiya; D. Pei; M. C. Romero Fuster. Spacelike Surfaces in Anti de Sitter Four-Space from a~Contact Viewpoint. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 164-181. http://geodesic.mathdoc.fr/item/TM_2009_267_a12/

[1] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, V. 1, Birkhäuser, Boston, 1985 | MR | Zbl

[2] Banchoff T., Gaffney T., McCrory C., Cusps of Gauss mappings, Res. Notes Math., 55, Pitman, London, 1982 | MR

[3] Bröcker Th., Differentiable germs and catastrophes, LMS Lect. Note Ser., 17, Cambridge Univ. Press, Cambridge–New York, 1975 | MR | Zbl

[4] Bruce J. W., Giblin P. J., Curves and singularitie, Cambridge Univ. Press, 2nd ed., 1992 | MR

[5] Bryant R. L., “Surfaces of mean curvature one in hyperbolic space”, Théorie des variétés minimales et applications (Palaiseau, 1983–1984), Astérisque, 154–155, Soc. math. France, Paris, 1988, 321–347 | MR

[6] Chandrasekhar S., The mathematical theory of black holes, Intern. Ser. Monogr. Phys., 69, Oxford Univ. Press, New York, 1983 | MR | Zbl

[7] Epstein C. L., “The hyperbolic Gauss map and quasiconformal reflections”, J. reine und angew. Math., 372 (1986), 96–135 | MR | Zbl

[8] Guillemin V., Pollack A., Differential topology, Prentice-Hall, Englewood Cliffs, NJ, 1974 | MR | Zbl

[9] Izumiya S., Kossowski M., Pei D., Romero Fuster M. C., “Singularities of lightlike hypersurfaces in Minkowski four-space”, Tohoku Math. J., 58 (2006), 71–88 | DOI | MR | Zbl

[10] Izumiya S., Nunño Ballesteros J. J., Romero Fuster M. C., “Global properties of codimension two spacelike submanifolds in Minkowski space”, Adv. Geom. (to appear)

[11] Izumiya S., Pei D., Romero Fuster M. C., “The lightcone Gauss map of a spacelike surface in Minkowski 4-space”, Asian J. Math., 8 (2004), 511–530 | DOI | MR | Zbl

[12] Izumiya S., Pei D., Sano T., “Singularities of hyperbolic Gauss maps”, Proc. London Math. Soc. Ser. 3, 86 (2003), 485–512 | DOI | MR | Zbl

[13] Izumiya S., Romero Fuster M. C., “The horospherical Gauss–Bonnet type theorem in hyperbolic space”, J. Math. Soc. Japan, 58 (2006), 965–984 | DOI | MR | Zbl

[14] Izumiya S., Romero Fuster M. C., “The lightlike flat geometry on spacelike submanifolds of codimension two in Minkowski space”, Sel. Math., 13:1 (2007), 23–55 | DOI | MR | Zbl

[15] Kossowski M., “The $S^2$-valued Gauss maps and split total curvature of space-like codimension-2 surface in Minkowski space”, J. London Math. Soc. Ser. 2, 40 (1989), 179–192 | DOI | MR | Zbl

[16] Kossowski M., “The intrinsic conformal structure and Gauss map of a light-like hypersurface in Minkowski space”, Trans. Amer. Math. Soc., 316:1 (1989), 369–383 | DOI | MR | Zbl

[17] Little J. A., “On singularities of submanifolds of higher dimensional Euclidean spaces”, Ann. Mat. Pura ed Appl. Ser. 4, 83 (1969), 261–335 | DOI | MR | Zbl

[18] Martinet J., Singularities of smooth functions and maps, LMS Lect. Note Ser., 58, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl

[19] Mather J. N., “Stability of $C^\infty$-mappings. IV: Classification of stable germs by $\mathbf R$-algebras”, Publ. Math. IHES, 37 (1969), 223–248 | DOI | MR | Zbl

[20] Misner C. W., Thorne K. S., Wheeler J. A., Gravitation, W. H. Freeman and Co., San Francisco, CA, 1973 | MR

[21] Montaldi J. A., “On contact between submanifolds”, Michigan Math. J., 33 (1986), 195–199 | DOI | MR | Zbl

[22] Montaldi J., “On generic composites of maps”, Bull. London Math. Soc., 23 (1991), 81–85 | DOI | MR | Zbl

[23] O'Neill B., Semi-Riemannian geometry, Acad. Press, New York, 1983 | MR | Zbl

[24] Wassermann G., “Stability of caustics”, Math. Ann., 216 (1975), 43–50 | DOI | MR | Zbl

[25] Whitney H., “On singularities of mappings of Euclidean spaces. I: Mappings of the plane into the plane”, Ann. Math. Ser. 2, 62 (1955), 374–410 | DOI | MR | Zbl

[26] Zakalyukin V. M., “O lagranzhevykh i lezhandrovykh osobennostyakh”, Funkts. analiz i ego pril., 10:1 (1976), 26–36 | MR | Zbl