Poincar\'e Series of Klein Groups, Coxeter Polynomials, the Burau Representation, and Milnor Invariants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 146-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain several formulas for the Poincaré series defined by B. Kostant for Klein groups (binary polyhedral groups) and some formulas for Coxeter polynomials (characteristic polynomials of monodromy in the case of singularities). Some of these formulas – the generalized Ebeling formula, the Christoffel–Darboux identity, and the combinatorial formula – are corollaries to the well-known statements on the characteristic polynomial of a graph and are analogous to formulas for orthogonal polynomials. The ratios of Poincaré series and Coxeter polynomials are represented in terms of branched continued fractions, which are $q$-analogs of continued fractions that arise in the theory of resolution of singularities and in the Kirby calculus. Other formulas connect the ratios of some Poincaré series and Coxeter polynomials with the Burau representation and Milnor invariants of string links. The results obtained by S. M. Gusein-Zade, F. Delgado, and A. Campillo allow one to consider these facts as statements on the Poincaré series of the rings of functions on the singularities of curves, which suggests the following conjecture: the ratio of the Poincaré series of the rings of functions for close (in the sense of adjacency or position in a series) singularities of curves is determined by the Burau representation or by the Milnor invariants of a string link, which is an intermediate object in the transformation of the knot of one singularity into the knot of the other.
@article{TM_2009_267_a11,
     author = {G. G. Ilyuta},
     title = {Poincar\'e {Series} of {Klein} {Groups,} {Coxeter} {Polynomials,} the {Burau} {Representation,} and {Milnor} {Invariants}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--163},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a11/}
}
TY  - JOUR
AU  - G. G. Ilyuta
TI  - Poincar\'e Series of Klein Groups, Coxeter Polynomials, the Burau Representation, and Milnor Invariants
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 146
EP  - 163
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a11/
LA  - ru
ID  - TM_2009_267_a11
ER  - 
%0 Journal Article
%A G. G. Ilyuta
%T Poincar\'e Series of Klein Groups, Coxeter Polynomials, the Burau Representation, and Milnor Invariants
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 146-163
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a11/
%G ru
%F TM_2009_267_a11
G. G. Ilyuta. Poincar\'e Series of Klein Groups, Coxeter Polynomials, the Burau Representation, and Milnor Invariants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 146-163. http://geodesic.mathdoc.fr/item/TM_2009_267_a11/

[1] Givental A. B., “Skruchennye formuly Pikara–Lefshetsa”, Funkts. analiz i ego pril., 22:1 (1988), 12–22 | MR | Zbl

[2] Gusein-Zade S. M., “Gruppy monodromii izolirovannykh osobennostei giperpoverkhnostei”, UMN, 32:2 (1977), 23–65 | MR | Zbl

[3] Gusein-Zade S. M., Delgado F., Kampilo A., “Polinom Aleksandera osobennosti ploskoi krivoi i koltso funktsii na nei”, UMN, 54:3 (1999), 157–158 | DOI | MR | Zbl

[4] Ilyuta G. G., “Sootnosheniya dlya mnogochlena Aleksandera”, UMN, 63:3 (2008), 161–162 | DOI | MR | Zbl

[5] Coxeter H. S. M., “The product of the generators of a finite group generated by reflections”, Duke Math. J., 18 (1951), 765–782 | DOI | MR | Zbl

[6] Ebeling W., “Poincaré series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity”, Manuscr. math., 107:3 (2002), 271–282 | DOI | MR | Zbl

[7] Gibson W., Ishikawa M., “Links and gordian numbers associated with generic immersions of intervals”, Topol. and Appl., 123 (2002), 609–636 | DOI | MR | Zbl

[8] Godsil C. D., Algebraic combinatorics, Chapman and Hall, New York, 1993 | MR | Zbl

[9] Hirasawa M., “Visualization of A'Campo's fibered links and unknotting operation”, Topol. and Appl., 121 (2002), 287–304 | DOI | MR | Zbl

[10] Hironaka E., “Chord diagrams and Coxeter links”, J. London Math. Soc. Ser. 2, 69 (2004), 243–257 | DOI | MR | Zbl

[11] Holtz O., Sturmfels B., “Hyperdeterminantal relations among symmetric principal minors”, J. Algebra, 316:2 (2007), 634–648 | DOI | MR | Zbl

[12] Kirk P., Livingston C., Wang Z., “The Gassner representation for string links”, Commun. Contemp. Math., 3:1 (2001), 87–136 | DOI | MR | Zbl

[13] Kostant B., “The McKay correspondence, the Coxeter element and representation theory”, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, Numéro Hors Sér., Soc. math. France, Paris, 1985, 209–255 | MR

[14] Kostant B., “The Coxeter element and the branching law for the finite subgroups of $SU(2)$”, The Coxeter legacy: Reflections and projections, Amer. Math. Soc., Providence, RI, 2006, 63–70 | MR | Zbl

[15] Lascoux A., Pragacz P., “Bezoutians, Euclidean algorithm, and orthogonal polynomials”, Ann. Comb., 9:3 (2005), 301–319 | DOI | MR | Zbl

[16] Levine J., “A factorization of the Conway polynomial”, Comment. Math. Helv., 74 (1999), 27–52 | DOI | MR | Zbl

[17] Ocken S., “Homology of branched cyclic covers of knots”, Proc. Amer. Math. Soc., 110:4 (1990), 1063–1067 | DOI | MR | Zbl

[18] Rosengren H., “Multivariable Christoffel–Darboux kernels and characteristic polynomials of random Hermitian matrices”, SIGMA. Symmetry Integrability Geom. Methods and Appl., 2 (2006), 085 | MR | Zbl

[19] Rossmann W., “McKay's correspondence and characters of finite subgroups of $SU(2)$”, Noncommutative harmonic analysis, Progr. Math., 220, Birkhäuser, Boston, 2004, 441–458 | MR | Zbl

[20] Seifert H., “Über das Geschlecht von Knoten”, Math. Ann., 110 (1935), 571–592 | DOI | MR | Zbl

[21] Siersma D., “The monodromy of a series of hypersurface singularities”, Comment. Math. Helv., 65 (1990), 181–197 | DOI | MR | Zbl

[22] Stekolshchik R., Notes on Coxeter transformations and the McKay correspondence, Springer Monogr. Math., Springer, Berlin, 2008 | MR | Zbl

[23] Suter R., “Quantum affine Cartan matrices, Poincaré series of binary polyhedral groups, and reflection representations”, Manuscr. math., 122:1 (2007), 1–21 | DOI | MR | Zbl

[24] Tsukamoto T., Yasuhara A., “A factorization of the Conway polynomial and covering linkage invariants”, J. Knot Theory and Ramif., 16 (2007), 631–640 | DOI | MR | Zbl