Caustics of Interior Scattering
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to geometrical optics of short linear waves in an inhomogeneous anisotropic medium. We find some typical singularities of caustics that arise due to the so-called interior scattering of waves, the mathematical theory of which was developed by V. I. Arnold in 1988.
@article{TM_2009_267_a0,
     author = {I. A. Bogaevsky},
     title = {Caustics of {Interior} {Scattering}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--13},
     year = {2009},
     volume = {267},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a0/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
TI  - Caustics of Interior Scattering
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 7
EP  - 13
VL  - 267
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a0/
LA  - ru
ID  - TM_2009_267_a0
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%T Caustics of Interior Scattering
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 7-13
%V 267
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a0/
%G ru
%F TM_2009_267_a0
I. A. Bogaevsky. Caustics of Interior Scattering. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 7-13. http://geodesic.mathdoc.fr/item/TM_2009_267_a0/

[1] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR | Zbl

[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 8: Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR

[3] Bogaevskii I. A., “Osobennosti rasprostraneniya korotkikh voln na ploskosti”, Mat. sb., 186:11 (1995), 35–52 | MR | Zbl

[4] Bogaevsky I. A., “New singularities and perestroikas of fronts of linear waves”, Moscow Math. J., 3:3 (2003), 807–821 | MR | Zbl

[5] Arnold V. I., “On the interior scattering of waves, defined by hyperbolic variational principles”, J. Geom. and Phys., 5:3 (1988), 305–315 | DOI | MR | Zbl