Properties of Faces of Parallelohedra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 112-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an important class of polytopes, called parallelohedra, that tile the Euclidean space. The concepts of a standard face of a parallelohedron and of the index of a face are introduced. It is shown that the sum of indices of standard faces in a parallelohedron is an invariant; this implies the Minkowski bound for the number of facets of parallelohedra. New properties of faces of parallelohedra are obtained.
@article{TM_2009_266_a5,
     author = {N. P. Dolbilin},
     title = {Properties of {Faces} of {Parallelohedra}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {112--126},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a5/}
}
TY  - JOUR
AU  - N. P. Dolbilin
TI  - Properties of Faces of Parallelohedra
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 112
EP  - 126
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a5/
LA  - ru
ID  - TM_2009_266_a5
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%T Properties of Faces of Parallelohedra
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 112-126
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a5/
%G ru
%F TM_2009_266_a5
N. P. Dolbilin. Properties of Faces of Parallelohedra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 112-126. http://geodesic.mathdoc.fr/item/TM_2009_266_a5/

[1] Fedorov E. S., Nachala ucheniya o figurakh, S.-Peterburg, 1885

[2] Minkowski H., “Allgemeine Lehrsätze über die convexen Polyeder”, Nachr. Ges. Wiss. Göttingen, 1897, 198–219 | Zbl

[3] Voronoï G., “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire: Recherches sur les paralléloèdres primitifs”, J. reine und angew. Math., 134 (1908), 198–287 ; 136 (1909), 67–178 ; Voronoi G. F., “Novye prilozheniya nepreryvnykh parametrov k teorii kvadratichnykh form. Vtoroi memuar: Issledovaniya po teorii primitivnykh paralleloedrov”, Sobr. soch., T. 2, Izd-vo AN USSR, Kiev, 1952, 250–368 | Zbl | Zbl

[4] Delaunay B. N., “Sur la partition régulière de l'espace à 4 dimensions”, Izv. AN SSSR, 1929, no. 1, 79–110 ; no. 2, 147–164 | Zbl

[5] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62

[6] Zhitomirskii O. K., “Verschärfung eines Satzes von Voronoi”, Zhurn. Leningr. fiz.-mat. o-va, 2 (1929), 131–151

[7] Venkov B. A., “Ob odnom klasse evklidovykh mnogogrannikov”, Vestn. Leningr. un-ta. Matematika. Fizika. Khimiya, 9:2 (1954), 11–31 | MR

[8] Aleksandrov A. D., “O zapolnenii prostranstva mnogogrannikami”, Vestn. Leningr. un-ta. Matematika. Fizika. Khimiya, 9:2 (1954), 33–43 | MR

[9] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhizdat, M.–L., 1950 | MR | Zbl

[10] McMullen P., “Convex bodies which tile space by translation”, Mathematika, 27 (1980), 113–121 | DOI | MR | Zbl

[11] Ryshkov S. S., Baranovskii E. P., $S$-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii), Tr. MIAN, 137, Nauka, M., 1976 | MR

[12] Shtogrin M. I., Pravilnye razbieniya Dirikhle–Voronogo dlya vtoroi triklinnoi gruppy, Tr. MIAN, 123, Nauka, M., 1973 | MR

[13] Engel P., “The contraction types of parallelohedra in $E^5$”, Acta crystallogr. A, 56 (2000), 491–496 | DOI | MR | Zbl

[14] Erdahl R., “Zonotopes, dicings, and Voronoi's conjecture on parallelohedra”, Eur. J. Comb., 20:6 (1999), 527–549 | DOI | MR | Zbl

[15] Ziegler G. M., Lectures on polytopes, Springer, Berlin, 1995 | MR | Zbl

[16] Sanyal R., Werner A., Ziegler G. M., “On Kallai's conjectures concerning centrally symmetric polytopes”, Discrete and Comput. Geom., 41:2 (2009), 183–198 ; arXiv: 0708.3661 | DOI | MR | Zbl

[17] Dolbilin N. P., “The extension theorem”, Discrete Math., 221:1–3 (2000), 43–59 | DOI | MR | Zbl

[18] Dolbilin N. P., Makarov V. S., “Teorema o prodolzhenii v teorii pravilnykh razbienii i ee prilozheniya”, Tr. MIAN, 239, 2002, 146–169 | MR | Zbl

[19] Dolbilin N. P., “On the Minkowski and Venkov theorems on parallelotopes”, Voronoi Conf. on Analytic Number Theory and Spatial Tessellations, Abstr., Kyiv, 2003, 12

[20] Dolbilin N. P., “Teoremy Minkovskogo o paralleloedrakh i ikh obobscheniya”, UMN, 62:4 (2007), 157–158 | DOI | MR | Zbl