Bending of a~Developable Surface That Preserves Its Edge and Generators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 263-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of reconstructing a piecewise smooth developable surface with a curvilinear edge from its development on which the preimages of the curvilinear edge and all rectilinear generators of the surface that emanate from the points of this edge are given. The required developable surface admits a one-parameter bending in the ambient Euclidean 3-space, and this bending is presented explicitly by formulas.
@article{TM_2009_266_a14,
     author = {M. I. Shtogrin},
     title = {Bending of {a~Developable} {Surface} {That} {Preserves} {Its} {Edge} and {Generators}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {263--271},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a14/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - Bending of a~Developable Surface That Preserves Its Edge and Generators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 263
EP  - 271
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a14/
LA  - ru
ID  - TM_2009_266_a14
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T Bending of a~Developable Surface That Preserves Its Edge and Generators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 263-271
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a14/
%G ru
%F TM_2009_266_a14
M. I. Shtogrin. Bending of a~Developable Surface That Preserves Its Edge and Generators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 263-271. http://geodesic.mathdoc.fr/item/TM_2009_266_a14/

[1] Gilbert D., Kon-Fossen S., Naglyadnaya geometriya, Per. s nem., 3-e izd., Nauka, M., 1981 | MR

[2] Rashevskii P. K., Kurs differentsialnoi geometrii, 5-e izd., ispr., Klas. uchebnik MGU, Izd-vo LKI, M., 2008

[3] Pogorelov A. V., Geometricheskie metody v nelineinoi teorii uprugikh obolochek, Nauka, M., 1967 | MR

[4] Shtogrin M. I., “Kusochno gladkie razvertyvayuschiesya poverkhnosti”, Tr. MIAN, 263, 2008, 227–250 | MR | Zbl