Bending of a~Developable Surface That Preserves Its Edge and Generators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 263-271
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of reconstructing a piecewise smooth developable surface with a curvilinear edge from its development on which the preimages of the curvilinear edge and all rectilinear generators of the surface that emanate from the points of this edge are given. The required developable surface admits a one-parameter bending in the ambient Euclidean 3-space, and this bending is presented explicitly by formulas.
@article{TM_2009_266_a14,
author = {M. I. Shtogrin},
title = {Bending of {a~Developable} {Surface} {That} {Preserves} {Its} {Edge} and {Generators}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {263--271},
publisher = {mathdoc},
volume = {266},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a14/}
}
TY - JOUR AU - M. I. Shtogrin TI - Bending of a~Developable Surface That Preserves Its Edge and Generators JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 263 EP - 271 VL - 266 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_266_a14/ LA - ru ID - TM_2009_266_a14 ER -
M. I. Shtogrin. Bending of a~Developable Surface That Preserves Its Edge and Generators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 263-271. http://geodesic.mathdoc.fr/item/TM_2009_266_a14/