Differential Transformations of Parabolic Second-Order Operators in the Plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 227-236

Voir la notice de l'article provenant de la source Math-Net.Ru

Darboux's classical results about transformations of second-order hyperbolic equations by means of differential substitutions are extended to the case of parabolic equations of the form $Lu=(D^2_x+a(x,y)D_x+b(x,y)D_y+c(x,y))u=0$. We prove a general theorem that provides a way to determine admissible differential substitutions for such parabolic equations. It turns out that higher order transforming operators can always be represented as a composition of first-order operators that define a series of consecutive transformations. The existence of inverse transformations imposes some differential constrains on the coefficients of the initial operator. We show that these constraints may imply famous integrable equations, in particular, the Boussinesq equation.
@article{TM_2009_266_a12,
     author = {S. P. Tsarev and E. S. Shemyakova},
     title = {Differential {Transformations} of {Parabolic} {Second-Order} {Operators} in the {Plane}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {227--236},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a12/}
}
TY  - JOUR
AU  - S. P. Tsarev
AU  - E. S. Shemyakova
TI  - Differential Transformations of Parabolic Second-Order Operators in the Plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 227
EP  - 236
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a12/
LA  - ru
ID  - TM_2009_266_a12
ER  - 
%0 Journal Article
%A S. P. Tsarev
%A E. S. Shemyakova
%T Differential Transformations of Parabolic Second-Order Operators in the Plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 227-236
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a12/
%G ru
%F TM_2009_266_a12
S. P. Tsarev; E. S. Shemyakova. Differential Transformations of Parabolic Second-Order Operators in the Plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 227-236. http://geodesic.mathdoc.fr/item/TM_2009_266_a12/