Differential Transformations of Parabolic Second-Order Operators in the Plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 227-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

Darboux's classical results about transformations of second-order hyperbolic equations by means of differential substitutions are extended to the case of parabolic equations of the form $Lu=(D^2_x+a(x,y)D_x+b(x,y)D_y+c(x,y))u=0$. We prove a general theorem that provides a way to determine admissible differential substitutions for such parabolic equations. It turns out that higher order transforming operators can always be represented as a composition of first-order operators that define a series of consecutive transformations. The existence of inverse transformations imposes some differential constrains on the coefficients of the initial operator. We show that these constraints may imply famous integrable equations, in particular, the Boussinesq equation.
@article{TM_2009_266_a12,
     author = {S. P. Tsarev and E. S. Shemyakova},
     title = {Differential {Transformations} of {Parabolic} {Second-Order} {Operators} in the {Plane}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {227--236},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a12/}
}
TY  - JOUR
AU  - S. P. Tsarev
AU  - E. S. Shemyakova
TI  - Differential Transformations of Parabolic Second-Order Operators in the Plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 227
EP  - 236
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a12/
LA  - ru
ID  - TM_2009_266_a12
ER  - 
%0 Journal Article
%A S. P. Tsarev
%A E. S. Shemyakova
%T Differential Transformations of Parabolic Second-Order Operators in the Plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 227-236
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a12/
%G ru
%F TM_2009_266_a12
S. P. Tsarev; E. S. Shemyakova. Differential Transformations of Parabolic Second-Order Operators in the Plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 227-236. http://geodesic.mathdoc.fr/item/TM_2009_266_a12/

[1] Veselov A. P., Shabat A. B., “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shrëdingera”, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | MR | Zbl

[2] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–106 | DOI | MR | Zbl

[3] Zhiber A. V., Startsev S. Ya., “Integraly, resheniya i suschestvovanie preobrazovanii Laplasa lineinoi giperbolicheskoi sistemy uravnenii”, Mat. zametki, 74:6 (2003), 848–857 | DOI | MR | Zbl

[4] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[5] Startsev S. Ya., “Metod kaskadnogo integrirovaniya Laplasa dlya lineinykh giperbolicheskikh sistem uravnenii”, Mat. zametki, 83:1 (2008), 107–118 | DOI | MR | Zbl

[6] Taimanov I. A., Tsarev S. P., “Dvumernye operatory Shrëdingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, UMN, 62:3 (2007), 217–218 | DOI | MR | Zbl

[7] Taimanov I. A., Tsarev S. P., “Dvumernye ratsionalnye solitony, postroennye s pomoschyu preobrazovanii Mutara, i ikh raspad”, TMF, 157:2 (2008), 188–207 | DOI | MR | Zbl

[8] Tsarev S. P., “O nelineinykh uravneniyakh s chastnymi proizvodnymi, integriruemykh po Darbu”, Tr. MIAN, 225, 1999, 389–399 | MR | Zbl

[9] Anderson I. M., Kamran N., “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[10] Athorne C., Nimmo J. J. C., “On the Moutard transformation for integrable partial differential equations”, Inverse Probl., 7:6 (1991), 809–826 | DOI | MR | Zbl

[11] Athorne C., “A $\mathbf Z^2\times\mathbf R^3$ Toda system”, Phys. Lett. A, 206 (1995), 162–166 | DOI | MR | Zbl

[12] Backes F., “Sur les réseaux conjugués qui se reproduisent après quatre transformations de Laplace”, Bull. Acad. Bruxelles Cl. Sci. Ser. 5, 21:10 (1935), 883–892 | Zbl

[13] Berest Yu., Veselov A., “On the structure of singularities of integrable Schrödinger operators”, Lett. Math. Phys., 52:2 (2000), 103–111 | DOI | MR | Zbl

[14] Bianchi L., Lezioni di geometria differenziale, 3d ed., V. 1–4, Zanichielli, Bologna, 1923–1927

[15] Eisenhart L. P., Transformations of surfaces, Princeton Univ. Press, Princeton, 1923 ; 2nd ed., Chelsea Publ., New York, 1962 | Zbl

[16] Ferapontov E. V., “Laplace transformations of hydrodynamic-type systems in Riemann invariants: Periodic sequences”, J. Phys. A Math. and Gen., 30 (1997), 6861–6878 | DOI | MR | Zbl

[17] Forsyth A. R., Theory of differential equations, Pt. 4, V. 6, Cambridge Univ. Press, Cambridge, 1906

[18] Goursat É., Leçons sur l'intégration des équations aux dérivées partielles du seconde ordre à deux variables indépendantes, V. 2, Hermann, Paris, 1898 | Zbl

[19] Ibragimov N. H., “Laplace type invariants for parabolic equations”, Nonlin. Dyn., 28:2 (2002), 125–133 | DOI | MR | Zbl

[20] Le Roux J., “Extension de la méthode de Laplace aux équations linéaires aux dérivées partielles d'ordre supérieur au second”, Bull. Soc. math. France, 27 (1899), 237–262 | MR | Zbl

[21] Novikov S. P., Veselov A. P., “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry, and topology: On the crossroad, AMS Transl. Ser. 2, 179, Amer. Math. Soc., Providence (RI), 1997, 109–132 | MR | Zbl

[22] Petrén L., “Extension de la méthode de Laplace aux équations $\sum_{i=0}^{n-1}A_{1i}\frac{\partial^{i+1}z}{\partial x\partial y^i}+\sum_{i=0}^nA_{0i}\frac{\partial^iz}{\partial y^i}=0$”, Lund Univ. Arsskrift., 7:3 (1911), 1–166

[23] Pisati L., “Sulla estensione del metodo di Laplace alle equazioni differenziali lineari di ordine qualunque con due variabili indipendenti”, Rend. Circ. Mat. Palermo, 20 (1905), 344–374 | DOI | Zbl

[24] Tsarev S. P., “Generalized Laplace transformations and integration of hyperbolic systems of linear partial differential equations”, ISSAC' 2005, Proc. Intern. Symp. on Symbolic and Algebraic Computation (Beijing, China, July 24–27, 2005), ACM Press, New York, 2005, 325–331 ; arXiv: cs/0501030 | MR

[25] Tsarev S. P., “On factorization and solution of multidimensional linear partial differential equations”, Computer algebra 2006: Latest advances in symbolic algorithms, Proc. Waterloo Workshop (Ontario, Canada, Apr. 10–12, 2006), World Sci., Hackensack (NJ), 2007, 181–192 ; arXiv: cs/0609075 | DOI | MR

[26] Tzitzéica G., Géométrie différentielle projective des réseaux, Gauthier-Villars, Paris, 1924

[27] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, V. 2, Gauthier-Villars, Paris, 1889 | Zbl

[28] Shemyakova E., Mansfield E. L., “Moving frames for Laplace invariants”, ISSAC' 2008, Proc. Intern. Symp. on Symbolic and Algebraic Computation (Linz, Austria, July 20–23, 2008), ACM Press, New York, 2008, 295–302 | MR