Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 218-226
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of reconstructing a locally Euclidean metric on a disk from the geodesic curvature of the boundary given in the sought metric is considered. This problem is an analog and a generalization of the classical problem of finding a closed plane curve from its curvature given as a function of the arc length. The solution of this problem in our approach can be interpreted as finding a plane domain with the standard Euclidean metric whose boundary has a given geodesic curvature.
@article{TM_2009_266_a11,
author = {I. Kh. Sabitov},
title = {Locally {Euclidean} {Metrics} with {a~Given} {Geodesic} {Curvature} of the {Boundary}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {218--226},
publisher = {mathdoc},
volume = {266},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a11/}
}
TY - JOUR AU - I. Kh. Sabitov TI - Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 218 EP - 226 VL - 266 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_266_a11/ LA - ru ID - TM_2009_266_a11 ER -
I. Kh. Sabitov. Locally Euclidean Metrics with a~Given Geodesic Curvature of the Boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 218-226. http://geodesic.mathdoc.fr/item/TM_2009_266_a11/