Heat Equations and Families of Two-Dimensional Sigma Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 5-32

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of S. P. Novikov's program for boosting the effectiveness of theta-function formulas of finite-gap integration theory, a system of differential equations for the parameters of the sigma function in genus 2 is constructed. A counterpart of this system in genus 1 is equivalent to the Chazy equation. On the basis of the obtained results, a two-dimensional analog of the Frobenius–Stickelberger connection is defined and calculated.
@article{TM_2009_266_a0,
     author = {E. Yu. Bunkova and V. M. Buchstaber},
     title = {Heat {Equations} and {Families} of {Two-Dimensional} {Sigma} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--32},
     publisher = {mathdoc},
     volume = {266},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a0/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
AU  - V. M. Buchstaber
TI  - Heat Equations and Families of Two-Dimensional Sigma Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 5
EP  - 32
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_266_a0/
LA  - ru
ID  - TM_2009_266_a0
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%A V. M. Buchstaber
%T Heat Equations and Families of Two-Dimensional Sigma Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 5-32
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_266_a0/
%G ru
%F TM_2009_266_a0
E. Yu. Bunkova; V. M. Buchstaber. Heat Equations and Families of Two-Dimensional Sigma Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 5-32. http://geodesic.mathdoc.fr/item/TM_2009_266_a0/