Heat Equations and Families of Two-Dimensional Sigma Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 5-32
Voir la notice de l'article provenant de la source Math-Net.Ru
In the framework of S. P. Novikov's program for boosting the effectiveness of theta-function formulas of finite-gap integration theory, a system of differential equations for the parameters of the sigma function in genus 2 is constructed. A counterpart of this system in genus 1 is equivalent to the Chazy equation. On the basis of the obtained results, a two-dimensional analog of the Frobenius–Stickelberger connection is defined and calculated.
@article{TM_2009_266_a0,
author = {E. Yu. Bunkova and V. M. Buchstaber},
title = {Heat {Equations} and {Families} of {Two-Dimensional} {Sigma} {Functions}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {5--32},
publisher = {mathdoc},
volume = {266},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2009_266_a0/}
}
TY - JOUR AU - E. Yu. Bunkova AU - V. M. Buchstaber TI - Heat Equations and Families of Two-Dimensional Sigma Functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 5 EP - 32 VL - 266 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_266_a0/ LA - ru ID - TM_2009_266_a0 ER -
E. Yu. Bunkova; V. M. Buchstaber. Heat Equations and Families of Two-Dimensional Sigma Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. II, Tome 266 (2009), pp. 5-32. http://geodesic.mathdoc.fr/item/TM_2009_266_a0/