Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_265_a7, author = {V. Dremov and G. Shabat and P. Vytnova}, title = {On {Dynamical} {Systems} with 2-adic {Time}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {101--109}, publisher = {mathdoc}, volume = {265}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a7/} }
V. Dremov; G. Shabat; P. Vytnova. On Dynamical Systems with 2-adic Time. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 101-109. http://geodesic.mathdoc.fr/item/TM_2009_265_a7/
[1] Campanino M., Epstein H., “On the existence of Feigenbaum's fixed point”, Commun. Math. Phys., 79 (1981), 261–302 | DOI | MR | Zbl
[2] Collet P., Eckmann J.-P., Iterated maps on the interval as dynamical systems, Birkhäuser, Boston, 1980 | MR | Zbl
[3] Dremov V. A., “Ob odnom $p$-adicheskom mnozhestve Zhyulia”, UMN, 58:6 (2003), 151–152 | DOI | MR | Zbl
[4] Dremov V., Shabat G., Vytnova P., “On the chaotic properties of quadratic maps over non-archimedean fields”, $p$-Adic mathematical physics, Proc. 2nd Intern. Conf. (Belgrade, 2005), AIP Conf. Proc., 826, Amer. Inst. Phys., Melville, NY, 2006, 43–54 | DOI | MR | Zbl
[5] Feigenbaum M. J., “Quantitative universality for a class of nonlinear transformations”, J. Stat. Phys., 19 (1978), 25–52 | DOI | MR | Zbl
[6] Lanford O. E., III, “Smooth transformations of intervals”, Séminaire Bourbaki, 1980/81,, Lect. Notes Math., 901, Springer, Berlin, 1981, Exp. 563, 36–54 | MR
[7] Misiurewicz M., “Structure of mappings of an interval with zero entropy”, Publ. Math. IHES, 53 (1981), 5–16 | DOI | MR
[8] Shabat G. B., “$p$-Adicheskie entropii logisticheskikh otobrazhenii”, Tr. MIAN, 245, 2004, 257–263 | MR | Zbl
[9] Sinai Ya. G., Sovremennye problemy ergodicheskoi teorii, Fizmatlit, M., 1995 | Zbl
[10] Thiran E., Verstegen D., Weyers J., “$p$-Adic dynamics”, J. Stat. Phys., 54 (1989), 893–913 | DOI | MR | Zbl
[11] Vul E. B., Sinai Ya. G., Khanin K. M., “Universalnost Feigenbauma i termodinamicheskii formalizm”, UMN, 39:3 (1984), 3–37 | MR | Zbl