Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_265_a6, author = {B. Dragovich and Z. Raki\'c}, title = {Noncommutative {Classical} and {Quantum} {Mechanics} for {Quadratic} {Lagrangians} {(Hamiltonians)}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {90--100}, publisher = {mathdoc}, volume = {265}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a6/} }
TY - JOUR AU - B. Dragovich AU - Z. Rakić TI - Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians) JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 90 EP - 100 VL - 265 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_265_a6/ LA - en ID - TM_2009_265_a6 ER -
%0 Journal Article %A B. Dragovich %A Z. Rakić %T Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians) %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2009 %P 90-100 %V 265 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2009_265_a6/ %G en %F TM_2009_265_a6
B. Dragovich; Z. Rakić. Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 90-100. http://geodesic.mathdoc.fr/item/TM_2009_265_a6/
[1] Szabo R. J., “Magnetic backgrounds and noncommutative field theory”, Intern. J. Mod. Phys. A, 19:12 (2004), 1837–1861 | DOI | MR | Zbl
[2] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Mod. Phys., 73 (2001), 977–1029 | DOI | MR | Zbl
[3] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299 | DOI | MR | Zbl
[4] Chaichian M., Prešnajder P., Sheikh-Jabbari M. M., Tureanu A., “Aharonov–Bohm effect in noncommutative spaces”, Phys. Lett. B, 527 (2002), 149–154 | DOI | MR | Zbl
[5] Duval C., Horváthy P. A., “The exotic Galilei group and the “Peierls substitution””, Phys. Lett. B, 479 (2000), 284–290 | DOI | MR | Zbl
[6] Mezincescu L., Star operation in quantum mechanics, E-print , 2000 arXiv: hep-th/0007046
[7] Dragovich B., Rakić Z., “Lagrangian aspects of quantum dynamics on a noncommutative space”, Contemporary geometry and related topics, Proc. Workshop (Belgrade, May 2002), eds. N. Bokan et al., World Sci., River Edge, NJ, 2004, 159–171 ; arXiv: hep-th/0302167 | DOI | MR | Zbl
[8] Dragovich B., Rakich Z., “Kontinualnye integraly v nekommutativnoi kvantovoi mekhanike”, TMF, 140:3 (2004), 480–491 ; arXiv: hep-th/0309204 | DOI | MR | Zbl
[9] Dragovich B., Rakić Z., “Path integral approach to noncommutative quantum mechanics”, Lie theory and its applications in physics, Proc. Fifth Intern. Workshop (Varna, Bulgaria, June 2003), eds. H.-D. Doebner, V. K. Dobrev, World Sci., River Edge, NJ, 2004, 364–373 ; arXiv: hep-th/0401198 | DOI | MR
[10] Dragovich B., Rakić Z., Noncommutative quantum mechanics with path integral, E-print , 2005 arXiv: hep-th/0501231
[11] Dragovich B., Dugić M., “On decoherence in noncommutative plane with perpendicular magnetic field”, J. Phys. A: Math. and Gen., 38 (2005), 6603–6611 ; arXiv: hep-th/0503163 | DOI | MR | Zbl
[12] Feynman R. P., Hibbs A. R., Quantum mechanics and path integrals, McGraw-Hill, New York, 1965 | Zbl
[13] Grosche C., Steiner F., Handbook of Feynman path integrals, Springer, Berlin, 1998 | MR | Zbl
[14] Christiansen H. R., Schaposnik F. A., “Noncommutative quantum mechanics and rotating frames”, Phys. Rev. D, 65:8 (2002), Pap. 086005 | DOI | MR
[15] Dayi Ö. F., Jellal A., “Hall effect in noncommutative coordinates”, J. Math. Phys., 43 (2002), 4592–4601 | DOI | MR
[16] Bamba K., Yokoyama J., Generation of large-scale magnetic fields from dilaton inflation in noncommutative spacetime, E-print , 2005 arXiv: hep-ph/0502244
[17] Widrow L. M., “Origin of galactic and extragalactic magnetic fields”, Rev. Mod. Phys., 74 (2002), 775–823 | DOI