Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians)
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 90-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical and quantum mechanics based on an extended Heisenberg algebra with additional canonical commutation relations for position and momentum coordinates are considered. In this approach additional noncommutativity is removed from the algebra by a linear transformation of coordinates and transferred to the Hamiltonian (Lagrangian). This linear transformation does not change the quadratic form of the Hamiltonian (Lagrangian), and Feynman's path integral preserves its exact expression for quadratic models. The compact general formalism presented here can be easily illustrated in any particular quadratic case. As an important result of phenomenological interest, we give the path integral for a charged particle in the noncommutative plane with a perpendicular magnetic field. We also present an effective Planck constant $\hbar _\mathrm{eff}$ which depends on additional noncommutativity.
@article{TM_2009_265_a6,
     author = {B. Dragovich and Z. Raki\'c},
     title = {Noncommutative {Classical} and {Quantum} {Mechanics} for {Quadratic} {Lagrangians} {(Hamiltonians)}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {90--100},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a6/}
}
TY  - JOUR
AU  - B. Dragovich
AU  - Z. Rakić
TI  - Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians)
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 90
EP  - 100
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a6/
LA  - en
ID  - TM_2009_265_a6
ER  - 
%0 Journal Article
%A B. Dragovich
%A Z. Rakić
%T Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians)
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 90-100
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a6/
%G en
%F TM_2009_265_a6
B. Dragovich; Z. Rakić. Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 90-100. http://geodesic.mathdoc.fr/item/TM_2009_265_a6/

[1] Szabo R. J., “Magnetic backgrounds and noncommutative field theory”, Intern. J. Mod. Phys. A, 19:12 (2004), 1837–1861 | DOI | MR | Zbl

[2] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Mod. Phys., 73 (2001), 977–1029 | DOI | MR | Zbl

[3] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299 | DOI | MR | Zbl

[4] Chaichian M., Prešnajder P., Sheikh-Jabbari M. M., Tureanu A., “Aharonov–Bohm effect in noncommutative spaces”, Phys. Lett. B, 527 (2002), 149–154 | DOI | MR | Zbl

[5] Duval C., Horváthy P. A., “The exotic Galilei group and the “Peierls substitution””, Phys. Lett. B, 479 (2000), 284–290 | DOI | MR | Zbl

[6] Mezincescu L., Star operation in quantum mechanics, E-print , 2000 arXiv: hep-th/0007046

[7] Dragovich B., Rakić Z., “Lagrangian aspects of quantum dynamics on a noncommutative space”, Contemporary geometry and related topics, Proc. Workshop (Belgrade, May 2002), eds. N. Bokan et al., World Sci., River Edge, NJ, 2004, 159–171 ; arXiv: hep-th/0302167 | DOI | MR | Zbl

[8] Dragovich B., Rakich Z., “Kontinualnye integraly v nekommutativnoi kvantovoi mekhanike”, TMF, 140:3 (2004), 480–491 ; arXiv: hep-th/0309204 | DOI | MR | Zbl

[9] Dragovich B., Rakić Z., “Path integral approach to noncommutative quantum mechanics”, Lie theory and its applications in physics, Proc. Fifth Intern. Workshop (Varna, Bulgaria, June 2003), eds. H.-D. Doebner, V. K. Dobrev, World Sci., River Edge, NJ, 2004, 364–373 ; arXiv: hep-th/0401198 | DOI | MR

[10] Dragovich B., Rakić Z., Noncommutative quantum mechanics with path integral, E-print , 2005 arXiv: hep-th/0501231

[11] Dragovich B., Dugić M., “On decoherence in noncommutative plane with perpendicular magnetic field”, J. Phys. A: Math. and Gen., 38 (2005), 6603–6611 ; arXiv: hep-th/0503163 | DOI | MR | Zbl

[12] Feynman R. P., Hibbs A. R., Quantum mechanics and path integrals, McGraw-Hill, New York, 1965 | Zbl

[13] Grosche C., Steiner F., Handbook of Feynman path integrals, Springer, Berlin, 1998 | MR | Zbl

[14] Christiansen H. R., Schaposnik F. A., “Noncommutative quantum mechanics and rotating frames”, Phys. Rev. D, 65:8 (2002), Pap. 086005 | DOI | MR

[15] Dayi Ö. F., Jellal A., “Hall effect in noncommutative coordinates”, J. Math. Phys., 43 (2002), 4592–4601 | DOI | MR

[16] Bamba K., Yokoyama J., Generation of large-scale magnetic fields from dilaton inflation in noncommutative spacetime, E-print , 2005 arXiv: hep-ph/0502244

[17] Widrow L. M., “Origin of galactic and extragalactic magnetic fields”, Rev. Mod. Phys., 74 (2002), 775–823 | DOI