Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_265_a23, author = {I. V. Volovich and O. V. Groshev and N. A. Gusev and E. A. Kuryanovich}, title = {On {Solutions} to the {Wave} {Equation} on {a~Non-globally} {Hyperbolic} {Manifold}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {273--287}, publisher = {mathdoc}, volume = {265}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a23/} }
TY - JOUR AU - I. V. Volovich AU - O. V. Groshev AU - N. A. Gusev AU - E. A. Kuryanovich TI - On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 273 EP - 287 VL - 265 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_265_a23/ LA - ru ID - TM_2009_265_a23 ER -
%0 Journal Article %A I. V. Volovich %A O. V. Groshev %A N. A. Gusev %A E. A. Kuryanovich %T On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2009 %P 273-287 %V 265 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2009_265_a23/ %G ru %F TM_2009_265_a23
I. V. Volovich; O. V. Groshev; N. A. Gusev; E. A. Kuryanovich. On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 273-287. http://geodesic.mathdoc.fr/item/TM_2009_265_a23/
[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR
[2] Petrowsky I., “Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen”, Mat. sb., 2(44):5 (1937), 815–870 | Zbl
[3] Lere Zh., Giperbolicheskie differentsialnye uravneniya, Nauka, M., 1984 | MR
[4] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl
[5] Khoking S., Ellis Dzh., Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977
[6] Visser M., Lorentzian wormholes, Amer. Inst. Phys., Woodbury, NY, 1995 | MR
[7] Gott J. R., Time travel in Einstein's universe, Houghton Mifflin, New York, 2001
[8] Deser S., Jackiw R., “Time travel?”, Comments Nucl. Part. Phys., 20 (1992), 337–354; arXiv: hep-th/9206094
[9] Aref'eva I. Ya., “High energy scattering in the brane-world and black-hole production”, EChAYa, 31:7a (2000), 169–180; arXiv: hep-th/9910269
[10] Cvetic M., Gibbons G. W., Lu H., Pope C. N., Rotating black holes in gauged supergravities; thermodynamics, supersymmetric limits, topological solitons and time machines, E-print , 2005 arXiv: hep-th/0504080
[11] Gleiser R. J., Gürses M., Karasu A., Sarıoğlu Ö., “Closed timelike curves and geodesics of Gödel-type metrics”, Class. and Quantum Grav., 23 (2006), 2653–2663 ; arXiv: gr-qc/0512037 | DOI | MR | Zbl
[12] Kay B. S., “Quantum field theory in curved spacetime”, Encycl. Math. Phys., V. 4, eds. J.-P. Francoise, G. Naber, T. S. Tsou, Elsevier, Amsterdam, 2006, 202–212; arXiv: gr-qc/0601008
[13] Ori A., “Formation of closed timelike curves in a composite vacuum/dust asymptotically flat spacetime”, Phys. Rev. D, 76:4 (2007), Pap. 044002 ; arXiv: gr-qc/0701024 | DOI | MR
[14] Rosa V. M., Letelier P. S., “Stability of closed timelike curves in the Gödel universe”, Gen. Relativ. and Gravit., 39 (2007), 1419–1435 ; arXiv: gr-qc/0703100 | DOI | MR | Zbl
[15] Arefeva I. Ya., Volovich I. V., “Ob izotropnom energeticheskom uslovii i kosmologii”, TMF, 155:1 (2008), 3–12 ; arXiv: hep-th/0612098 | DOI | MR | Zbl
[16] Slobodov S., Unwrapping closed timelike curves, E-print , 2008 arXiv: 0808.0956 | MR | Zbl
[17] DeBenedictis A., Garattini R., Lobo F. S. N., “Phantom stars and topology change”, Phys. Rev. D, 78:10 (2008), Pap. 104003 ; arXiv: 0808.0839 | DOI
[18] Li L.-F., Zhu J.-Y., Averaged null energy condition in loop quantum cosmology, E-print , 2008 arXiv: 0812.3532 | MR
[19] Gibbons G., Kodama H., Repulsons in the Myers–Perry family, E-print , 2009 arXiv: 0901.1203
[20] Friedman J., Morris M. S., Novikov I. D., Echeverria F., Klinkhammer G., Thorne K. S., Yurtsever U., “Cauchy problem in spacetimes with closed timelike curves”, Phys. Rev. D, 42:6 (1990), 1915–1930 | DOI | MR
[21] Deutsch D., “Quantum mechanics near closed timelike lines”, Phys. Rev. D, 44:10 (1991), 3197–3217 | DOI | MR
[22] Politzer H. D., “Path integrals, density matrices, and infor mation flow with closed timelike curves”, Phys. Rev. D, 49:8 (1994), 3981–3989 | DOI | MR
[23] Arefeva I. Ya., Volovich I. V., Ishivatari T., “Zadacha Koshi na ne globalno giperbolicheskikh mnogoobraziyakh”, TMF, 157:3 (2008), 334–344 | DOI | MR | Zbl
[24] Aref'eva I. Ya., Volovich I. V., “Time machine at the LHC”, Intern. J. Geom. Methods Mod. Phys., 5:4 (2008), 641–651 ; arXiv: 0710.2696 | DOI | MR | Zbl
[25] Mironov A., Morozov A., Tomaras T. N., If LHC is a mini-time-machines factory, can we notice?, E-print , 2007 arXiv: 0710.3395
[26] Ilin V. A., Moiseev E. I., “Optimizatsiya granichnykh upravlenii kolebaniyami struny”, UMN, 60:6 (2005), 89–114 | DOI | MR | Zbl
[27] Kozlov V. V., Volovich I. V., “Finite action Klein–Gordon solutions on Lorentzian manifolds”, Intern. J. Geom. Methods Mod. Phys., 3:7 (2006), 1349–1357 ; arXiv: gr-qc/0603111 | DOI | MR | Zbl
[28] Nielsen H. B., Ninomiya M., Future dependent initial conditions from imaginary part in Lagrangian, E-print , 2006 arXiv: hep-ph/0612032
[29] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[30] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR
[31] Sakharov A. D., “Kosmologicheskie perekhody s izmeneniem signatury metriki”, ZhETF, 87:2 (1984), 375–383
[32] Arefeva I. Ya., Volovich I. V., “Teorii Kalutsy–Kleina i signatura prostranstva-vremeni”, Pisma v ZhETF, 41:12 (1985), 535–537
[33] Aref'eva I. Ya., Dragović B. G., Volovich I. V., “Extra time-like dimensions lead to a van ishing cosmological constant”, Phys. Lett. B, 177 (1986), 357–360 | DOI | MR