On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 273-287

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for the wave equation on a non-globally hyperbolic manifold of special form (the Minkowski plane with a handle) containing closed time-like curves. We prove that the classical solution of the Cauchy problem exists and is unique for initial data satisfying a specific set of additional requirements.
@article{TM_2009_265_a23,
     author = {I. V. Volovich and O. V. Groshev and N. A. Gusev and E. A. Kuryanovich},
     title = {On {Solutions} to the {Wave} {Equation} on {a~Non-globally} {Hyperbolic} {Manifold}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {273--287},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a23/}
}
TY  - JOUR
AU  - I. V. Volovich
AU  - O. V. Groshev
AU  - N. A. Gusev
AU  - E. A. Kuryanovich
TI  - On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 273
EP  - 287
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a23/
LA  - ru
ID  - TM_2009_265_a23
ER  - 
%0 Journal Article
%A I. V. Volovich
%A O. V. Groshev
%A N. A. Gusev
%A E. A. Kuryanovich
%T On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 273-287
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a23/
%G ru
%F TM_2009_265_a23
I. V. Volovich; O. V. Groshev; N. A. Gusev; E. A. Kuryanovich. On Solutions to the Wave Equation on a~Non-globally Hyperbolic Manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 273-287. http://geodesic.mathdoc.fr/item/TM_2009_265_a23/