Two-Periodic Dynamics in Finite Extensions of the $p$-adic Number Field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 247-253

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate 2-periodic points of a certain class of dynamical systems defined over the field of $p$-adic numbers. We determine the topological properties of these points and the nature of the smallest finite extension in which the periodic points reside.
@article{TM_2009_265_a21,
     author = {P.-A. Svensson},
     title = {Two-Periodic {Dynamics} in {Finite} {Extensions} of the $p$-adic {Number} {Field}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {247--253},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a21/}
}
TY  - JOUR
AU  - P.-A. Svensson
TI  - Two-Periodic Dynamics in Finite Extensions of the $p$-adic Number Field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 247
EP  - 253
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a21/
LA  - en
ID  - TM_2009_265_a21
ER  - 
%0 Journal Article
%A P.-A. Svensson
%T Two-Periodic Dynamics in Finite Extensions of the $p$-adic Number Field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 247-253
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a21/
%G en
%F TM_2009_265_a21
P.-A. Svensson. Two-Periodic Dynamics in Finite Extensions of the $p$-adic Number Field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 247-253. http://geodesic.mathdoc.fr/item/TM_2009_265_a21/