Critical Exponents in Fermionic Hierarchical Model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 241-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of algebraic computation of the critical exponent $\nu$ in the $2N$-component fermionic Dyson model on a hierarchical lattice without the use of perturbation theory. Analyzing the results in a particular case when $N=2$, we conclude that an algebraic approach in this model gives the same expression for $\nu$ as the approach of functional integration via Feynman diagrams in the $p$-adic $\varphi ^4$-model.
@article{TM_2009_265_a20,
     author = {R. G. Stepanov},
     title = {Critical {Exponents} in {Fermionic} {Hierarchical} {Model}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--246},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a20/}
}
TY  - JOUR
AU  - R. G. Stepanov
TI  - Critical Exponents in Fermionic Hierarchical Model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 241
EP  - 246
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a20/
LA  - en
ID  - TM_2009_265_a20
ER  - 
%0 Journal Article
%A R. G. Stepanov
%T Critical Exponents in Fermionic Hierarchical Model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 241-246
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a20/
%G en
%F TM_2009_265_a20
R. G. Stepanov. Critical Exponents in Fermionic Hierarchical Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 241-246. http://geodesic.mathdoc.fr/item/TM_2009_265_a20/

[1] Bleher P. M., Sinai Ja. G., “Investigation of the critical point in models of the type of Dyson's hierarchical models”, Commun. Math. Phys., 33 (1973), 23–42 | DOI | MR

[2] Collet P., Eckmann J.-P., A renormalization group analysis of the hierarchical model in statistical mechanics, Lect. Notes Phys., 74, Springer, Berlin–Heidelberg–New York, 1978 | MR

[3] Lerner E. Yu., Missarov M. D., “Fixed points of renormalization group for the hierarchical fermionic model”, J. Stat. Phys., 76 (1994), 805–817 | DOI | MR | Zbl

[4] Missarov M. D., “Renormalization group and renormalization theory in $p$-adic and adelic scalar models”, Dynamical systems and statistical mechanics, Adv. Sov. Math., 3, ed. Ya. G. Sinai, Amer. Math. Soc., Providence, RI, 1991, 143–164 | MR

[5] Missarov M. D., “Renormalization group solution of fermionic Dyson model”, Asymptotic combinatorics with application to mathematical physics, eds. V. A. Malyshev, A. M. Vershik, Kluwer, Dordrecht, 2002, 151–166 | DOI | MR | Zbl

[6] Missarov M. D., Stepanov R. G., “Epsilon-razlozheniya v $N$-komponentnoi $\varphi^4$-modeli”, TMF, 146:3 (2006), 365–384 | DOI | MR | Zbl

[7] Missarov M. D., Stepanov R. G., “Critical exponents in $p$-adic $\varphi^4$-model”, $p$-Adic mathematical physics, Proc. 2nd Intern. Conf. (Belgrade, 2005), AIP Conf. Proc., 826, Amer. Inst. Phys., Melville, NY, 2006, 129–139 | DOI | MR | Zbl

[8] Stepanov R. G., “Preobrazovanie renormalizatsionnoi gruppy v $2N$-komponentnoi fermionnoi ierarkhicheskoi modeli”, TMF, 146:2 (2006), 251–266 | DOI | MR | Zbl

[9] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[10] Wilson K. G., Kogut J., “The renormalization group and the $\varepsilon$-expansion”, Phys. Rep., 12 (1974), 75–199 | DOI

[11] Zinn-Justin J., Quantum field theory and critical phenomena, Clarendon Press, Oxford, 1996 | MR