Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_265_a2, author = {V. S. Anashin}, title = {Noncommutative {Algebraic} {Dynamics:} {Ergodic} {Theory} for {Profinite} {Groups}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {36--65}, publisher = {mathdoc}, volume = {265}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a2/} }
V. S. Anashin. Noncommutative Algebraic Dynamics: Ergodic Theory for Profinite Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 36-65. http://geodesic.mathdoc.fr/item/TM_2009_265_a2/
[1] Albeverio S., Gundlach M., Khrennikov A., Lindahl K.-O., “On the Markovian behavior of $p$-adic random dynamical systems”, Russ. J. Math. Phys., 8:2 (2001), 135–152 | MR | Zbl
[2] Anashin V. S., “Razreshimye gruppy s operatorami i kommutativnye koltsa, obladayuschie tranzitivnymi polinomami”, Algebra i logika, 21:6 (1982), 627–646 | MR
[3] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Mat. zametki, 55:2 (1994), 3–46 | MR | Zbl
[4] Anashin V., “Uniformly distributed sequences over $p$-adic integers”, Number theoretic and algebraic methods in computer science, Proc. Intern. Conf. (Moscow, June–July 1993), eds. A. J. van der Poorten, I. Shparlinsky, H. G. Zimmer, World Sci., Singapore, 1995, 1–18 | MR | Zbl
[5] Anashin V. S., “Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers”, J. Math. Sci., 89:4 (1998), 1355–1390 | DOI | MR | Zbl
[6] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Diskret. mat., 14:4 (2002), 3–64 ; arxiv: math/0209407 | DOI | MR | Zbl
[7] Anashin V. S., Pseudorandom number generation by $p$-adic ergodic transformations, E-print , 2004 arxiv: cs/0401030
[8] Anashin V. S., Pseudorandom number generation by $p$-adic ergodic transformations: An addendum, E-print , 2004 arxiv: cs/0402060
[9] Anashin V., “Ergodic transformations in the space of $p$-adic integers”, $p$-Adic mathematical physics, Proc. 2nd Intern. Conf. (Belgrade, Serbia and Montenegro, 15–21 Sept. 2005), AIP Conf. Proc., 826, eds. A. Yu. Khrennikov, Z. Rakić, I. V. Volovich, Amer. Inst. Phys., Melville, NY, 2006, 3–24 ; arxiv: math/0602083 | DOI | MR | Zbl
[10] Anashin V. S., Non-Archimedean analysis, T-functions, and cryptography, Mathematical methods and technologies in computer security: Lect. notes of the Intern. Summer School (Moscow State Univ., 2006), Maks Press, Moscow, 2006; arxiv: cs/0612038
[11] Anashin V. S., “Wreath products in stream cipher design”, Security and counteracting terrorism, Proc. Intern. Conf. (Moscow, 2–3 Nov. 2005), MCCME, Moscow, 2006, 135–161; arxiv: cs/0602012
[12] Anashin V., “Non-Archimedean ergodic theory and pseudorandom generators”, Comput. J., 2008 | Zbl
[13] Anashin V. S., Larin M. V., “Ob interpolyatsii na $A_5$”, 8-i Vsesoyuz. simpoz. po teorii grupp, Tez. dokl., Sumy, 1982, 6–7
[14] Arrowsmith D. K., Vivaldi F., “Some $p$-adic representations of the Smale horseshoe”, Phys. Lett. A, 176 (1993), 292–294 | DOI | MR
[15] Arrowsmith D. K., Vivaldi F., “Geometry of $p$-adic Siegel discs”, Physica D, 71 (1994), 222–236 | DOI | MR | Zbl
[16] Batra A., Morton P., “Algebraic dynamics of polynomial maps on the algebraic closure of a finite field. I”, Rocky Mount. J. Math., 24:2 (1994), 453–481 | DOI | MR | Zbl
[17] Batra A., Morton P., “Algebraic dynamics of polynomial maps on the algebraic closure of a finite field. II”, Rocky Mount. J. Math., 24:3 (1994), 905–932 | DOI | MR | Zbl
[18] Ben-Menahem S., $p$-Adic iterations, Preprint TAUP 1627-88, Tel Aviv Univ., 1988
[19] Benedetto R. L., Fatou components in $p$-adic dynamics, Ph. D. Thes., Dept. Math. Brown Univ., May 1998
[20] Benedetto R. L., “$p$-Adic dynamics and Sullivan's no wandering domains theorem”, Compos. Math., 122 (2000), 281–298 | DOI | MR | Zbl
[21] Benedetto R. L., “Hyperbolic maps in $p$-adic dynamics”, Ergod. Theory and Dyn. Syst., 21 (2001), 1–11 | DOI | MR | Zbl
[22] Benedetto R. L., “Reduction, dynamics, and Julia sets of rational functions”, J. Number Theory, 86 (2001), 175–195 | DOI | MR | Zbl
[23] Benedetto R. L., “Components and periodic points in non-Archimedean dynamics”, Proc. London Math. Soc., 84 (2002), 231–256 | DOI | MR | Zbl
[24] Benedetto R. L., “Examples of wandering domains in $p$-adic polynomial dynamics”, C. r. Math. Acad. sci. Paris, 335 (2002), 615–620 | DOI | MR | Zbl
[25] Benedetto R. L., “Non-Archimedean holomorphic maps and the Ahlfors islands theorem”, Amer. J. Math., 125 (2003), 581–622 | DOI | MR | Zbl
[26] Benedetto R. L., “Heights and preperiodic points of polynomials over function fields”, Intern. Math. Res. Not., 2005, no. 62, 3855–3866 | DOI | MR | Zbl
[27] Benedetto R. L., “Wandering domains in non-Archimedean polynomial dynamics”, Bull. London Math. Soc., 38 (2006), 937–950 | DOI | MR | Zbl
[28] Benedetto R. L., “Periodic points of polynomials over global fields”, J. reine und angew. Math., 608 (2007), 123–153 | MR | Zbl
[29] Bézivin J.-P., “Sur les points périodiques des applications rationnelles en dynamique ultramétrique”, Acta arith., 100 (2001), 63–74 | DOI | MR | Zbl
[30] Bézivin J.-P., “Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques”, Ann. Inst. Fourier, 51 (2001), 1635–1661 | DOI | MR | Zbl
[31] Bézivin J.-P., “Fractions rationnelles hyperboliques $p$-adiques”, Acta arith., 112 (2004), 151–175 | DOI | MR | Zbl
[32] Bézivin J.-P., “Sur la compacité des ensembles de Julia des polynômes $p$-adiques”, Math. Ztschr., 246 (2004), 273–289 | DOI | MR | Zbl
[33] Call G. S., Silverman J. H., “Canonical heights on varieties with morphisms”, Compos. Math., 89 (1993), 163–205 | MR | Zbl
[34] Chou W.-S., Shparlinski I. E., “On the cycle structure of repeated exponentiation modulo a prime”, J. Number Theory, 107 (2004), 345–356 | DOI | MR | Zbl
[35] Crowell R., Fox R., Introduction to knot theory, Ginn and Co., Boston, 1963 | MR | Zbl
[36] desJardins D. L., Zieve M. E., Polynomial Mappings $\operatorname{mod}p^n$, E-print , 2001 arxiv: math/0103046
[37] Dragovich B., Dragovich A., A $p$-adic model of DNA sequence and genetic code, E-print , 2006 arxiv: q-bio/0607018
[38] Fan A.-H., Li M.-T., Yao J.-Y., Zhou D., “$p$-Adic affine dynamical systems and applications”, C. r. Math. Acad. sci. Paris, 342 (2006), 129–134 | DOI | MR | Zbl
[39] Fan A.-H., Li M.-T., Yao J.-Y., Zhou D., “Strict ergodicity of affine $p$-adic dynamical systems on $\mathbb Z_p$”, Adv. Math., 214 (2007), 666–700 | DOI | MR | Zbl
[40] Fan A., Liao L., Wang Y. F., Zhou D., “$p$-Adic repellers in $\mathbb Q_p$ are subshifts of finite type”, C. r. Math. Acad. sci. Paris, 344 (2007), 219–224 | DOI | MR | Zbl
[41] Favre C., Rivera-Letelier J., “Théorème d'équidistribution de Brolin en dynamique $p$-adique”, C. r. Math. Acad. sci. Paris, 339 (2004), 271–276 | DOI | MR | Zbl
[42] Gundlach M., Khrennikov A., Lindahl K.-O., “Topological transitivity for $p$-adic dynamical systems”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 222, eds. A. K. Katsaras, W. H. Schikhof, L. van Hamme, M. Dekker, New York, 2001, 127–132 | MR | Zbl
[43] Gundlach M., Khrennikov A., Lindahl K.-O., “On ergodic behavior of $p$-adic dynamical systems”, Infin. Dimens. Anal. Quantum Probab. and Relat. Top, 4:4 (2001), 569–577 | DOI | MR | Zbl
[44] Gundlach V. M., Khrennikov A. Yu., Lindahl K.-O., “Ergodicity on $p$-adic sphere”, German Open Conference on Probability and Statistics, Univ. Hamburg Press, Hamburg, 2000, 15–21
[45] Halmos P. R., Lectures on ergodic theory, Publ. Math. Soc. Japan, 3, Kenkyusha, Tokyo, 1956 | MR
[46] Herman M. R., Yoccoz J.-C., “Generalizations of some theorems of small divisors to non-Archimedean fields”, Geometric dynamics, Lect. Notes Math., 1007, Springer, Berlin, 1983, 408–447 | DOI | MR
[47] Hsia L.-C., “A weak Néron model with applications to $p$-adic dynamical systems”, Compos. Math., 100 (1996), 277–304 | MR | Zbl
[48] Hsia L.-C., “Closure of periodic points over a non-Archimedean field”, J. London Math. Soc., 62 (2000), 685–700 | DOI | MR | Zbl
[49] Jonah D., Schreiber B. M., “Transitive affine transformations on groups”, Pacif. J. Math., 58:2 (1975), 483–509 | DOI | MR | Zbl
[50] Khrennikov A. Yu., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl
[51] Khrennikov A. Yu., A $p$-adic behaviour of the standard dynamical systems, Preprint No 290 (SFB-237), Ruhr Univ. Bochum, 1995
[52] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl
[53] Khrennikov A. Yu., “$p$-Adic information space and gene expression”, Integrative approaches to brain complexity, eds. S. Grant, N. Heintz, J. Noebels, Wellcome Trust Publ., Cambridge, 2006, 14
[54] Khrennikov A. Yu., Kozyrev S. V., “Genetic code on the dyadic plane”, Physica A: Stat. Mech. and Appl., 381 (2007), 265–272 | DOI
[55] Khrennikov A., Lindahl K.-O., Gundlach M., “Ergodicity in the $p$-adic framework”, Operator methods in ordinary and partial differential equations, Operator Methods: Adv. and Appl., 132, Birkhäuser, Basel–Boston–Berlin, 2002, 245–251 | MR | Zbl
[56] Khrennikov A., Nilsson M., “Behaviour of Hensel perturbations of $p$-adic monomial dynamical systems”, Anal. Math., 29 (2003), 107–133 | DOI | MR | Zbl
[57] Khrennikov A. Yu., Nilsson M., $p$-Adic deterministic and random dynamics, Kluwer, Dordrecht, 2004 | MR | Zbl
[58] Kingsbery J., Levin A., Preygel A., Silva C. E., “Measurable dynamics of maps on profinite groups”, Indag. Math., 18:4 (2007), 561–581 ; arxiv: org.math/0701899v1 | DOI | MR | Zbl
[59] Kuipers L., Niederreiter H., Uniform distribution of sequences, J. Wiley Sons, New York, 1974 | MR | Zbl
[60] Kuratowski K., Topology, V. 1, Acad. Press, New York–London, 1966 | MR | Zbl
[61] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskret. mat., 14:2 (2002), 20–32 | DOI | MR | Zbl
[62] Laubie F., Movahhedi A., Salinier A., “Systèmes dynamiques non archimédiens et corps des normes”, Compos. Math., 132 (2002), 57–98 | DOI | MR | Zbl
[63] Lausch H., “Zur Theorie der Polynompermutationen über endlichen Gruppen”, Arch. Math., 19:3 (1968), 284–288 | DOI | MR | Zbl
[64] Lausch H., “Interpolation on the alternating group $A_5$”, Contributions to general algebra, Proc. Klagenfurt Conf., Klagenfurt, 1978, 187–192 | MR
[65] Lausch H., Nöbauer W., Algebra of polynomials, North-Holland, Amsterdam, 1973 | MR | Zbl
[66] Li H.-C., “Counting periodic points of $p$-adic power series”, Compos. Math., 100 (1996), 351–364 | MR | Zbl
[67] Li H.-C., “$p$-Adic dynamical systems and formal groups”, Compos. Math., 104 (1996), 41–54 | MR | Zbl
[68] Li H.-C., “$p$-Adic periodic points and Sen's theorem”, J. Number Theory, 56 (1996), 309–318 | DOI | MR | Zbl
[69] Li H.-C., “When is a $p$-adic power series an endomorphism of a formal group?”, Proc. Amer. Math. Soc., 124 (1996), 2325–2329 | DOI | MR | Zbl
[70] Li H.-C., “Isogenies between dynamics of formal groups”, J. Number Theory, 62 (1997), 284–297 | DOI | MR | Zbl
[71] Li H.-C., “$p$-Adic power series which commute under composition”, Trans. Amer. Math. Soc., 349 (1997), 1437–1446 | DOI | MR | Zbl
[72] Li H.-C., “On heights of $p$-adic dynamical systems”, Proc. Amer. Math. Soc., 130 (2002), 379–386 | DOI | MR | Zbl
[73] Li H.-C., “$p$-Typical dynamical systems and formal groups”, Compos. Math., 130 (2002), 75–88 | DOI | MR | Zbl
[74] Lindahl K.-O., Dynamical systems in $p$-adic geometry, Licentiate Thes. School Math. and Syst. Eng. Växjö Univ., 2001
[75] Lindahl K.-O., “On Siegel's linearization theorem for fields of prime characteristic”, Nonlinearity, 17:3 (2004), 745–763 | DOI | MR | Zbl
[76] Lubin J., “Nonarchimedean dynamical systems”, Compos. Math., 94 (1994), 321–346 | MR | Zbl
[77] Lubin J., “Sen's theorem on iteration of power series”, Proc. Amer. Math. Soc., 123 (1995), 63–66 | DOI | MR | Zbl
[78] Lubin J., “Formal flows on the non-Archimedean open unit disk”, Compos. Math., 124 (2000), 123–136 | DOI | MR | Zbl
[79] Misiurewicz M., Stevens J. G., Thomas D. M., “Iterations of linear maps over finite fields”, Lin. Alg. and Appl., 413 (2006), 218–234 ; http://www.csam.montclair.edu/~thomasd/ducci.pdf | DOI | MR | Zbl
[80] Morton P., “Arithmetic properties of periodic points of quadratic maps”, Acta arith., 62:4 (1992), 343–372 | MR | Zbl
[81] Morton P., “Characterizing cyclic cubic extensions by automorphism polynomials”, J. Number Theory, 49 (1994), 183–208 | DOI | MR | Zbl
[82] Morton P., “On certain algebraic curves related to polynomial maps”, Compos. Math., 103 (1996), 319–350 | MR | Zbl
[83] Morton P., “Periods of maps on irreducible polynomials over finite fields”, Finite Fields and Appl., 3 (1997), 11–24 | DOI | MR | Zbl
[84] Morton P., “Galois groups of periodic points”, J. Algebra, 201 (1998), 401–428 | DOI | MR | Zbl
[85] Morton P., Patel P., “The Galois theory of periodic points of polynomial maps”, Proc. London Math. Soc., 68 (1994), 225–263 | DOI | MR | Zbl
[86] Morton P., Silverman J. H., “Rational periodic points of rational functions”, Intern. Math. Res. Not., 1994, no. 2, 97–110 | DOI | MR
[87] Morton P., Silverman J. H., “Periodic points, multiplicities, and dynamical units”, J. reine und angew. Math., 461 (1995), 81–122 | MR | Zbl
[88] Morton P., Vivaldi F., “Bifurcations and discriminants for polynomial maps”, Nonlinearity, 8:4 (1995), 571–584 | DOI | MR | Zbl
[89] Narkiewicz W., “Polynomial cycles in algebraic number fields”, Colloq. Math., 58 (1989), 151–155 | MR | Zbl
[90] Narkiewicz W., Polynomial mappings, Springer, Berlin, 1995 | MR | Zbl
[91] Narkiewicz W., “Arithmetics of dynamical systems: A survey”, Tatra Mt. Math. Publ., 11 (1997), 69–75 | MR | Zbl
[92] Narkiewicz W., “Finite polynomial orbits: A survey”, Algebraic number theory and diophantine analysis, Proc. Intern. Conf. (Graz, Austria, Aug. 30 – Sept. 5, 1998), eds. F. Halter-Koch et al., W. de Gruyter, Berlin, 2000, 331–338 | MR | Zbl
[93] Narkiewicz W., Pezda T., “Finite polynomial orbits in finitely generated domains”, Monatsh. Math., 124 (1997), 309–316 | DOI | MR | Zbl
[94] Nilsson M., “Fuzzy cycles of $p$-adic monomial dynamical systems”, Far East J. Dyn. Syst., 5:2 (2003), 149–173 | MR | Zbl
[95] Nyqvist R., “Some dynamical systems in finite field extensions of the $p$-adic numbers”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 222, eds. A. K. Katsaras, W. H. Schikhof, L. van Hamme, M. Dekker, New York, 2001, 243–253 | MR | Zbl
[96] Passman D., Permutation groups, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl
[97] Peinado A., Montoya F., Muñoz J., Yuste A. J., “Maximal periods of $x^2+c$ in $\mathbb F_q$”, Applied algebra, algebraic algorithms and error-correcting codes, Lect. Notes Comput. Sci., 2227, Springer, Berlin, 2001, 219–228 | DOI | MR | Zbl
[98] Pezda T., “Cycles of polynomial mappings in several variables”, Manuscr. math., 83 (1994), 279–289 | DOI | MR | Zbl
[99] Pezda T., “Cycles of polynomials in algebraically closed fields of positive characteristic”, Colloq. Math., 67 (1994), 187–195 | MR | Zbl
[100] Pezda T., “Polynomial cycles in certain local domains”, Acta arith., 66 (1994), 11–22 | MR | Zbl
[101] Pezda T., “Cycles of polynomials in algebraically closed fields of positive characteristic. II”, Colloq. Math., 71 (1996), 23–30 | MR | Zbl
[102] Pezda T., “On cycles and orbits of polynomial mappings $\mathbb Z^2\to\mathbb Z^2$”, Acta Math. Inform. Univ. Ostrav., 10 (2002), 95–102 | MR | Zbl
[103] Pezda T., “Cycles of polynomial mappings in several variables over rings of integers in finite extensions of the rationals”, Acta arith., 108 (2003), 127–146 | DOI | MR | Zbl
[104] Rajagopalan M., Schreiber B., “Ergodic automorphisms and affine transformations of locally compact groups”, Pacif. J. Math., 38:1 (1971), 167–176 | DOI | MR | Zbl
[105] Rivera-Letelier J., Dynamique des fractions rationnelles sur des corps locaux, Ph. D. Thes., Univ. Paris-sud. Centre d'Orsay, 2000
[106] Rivera-Letelier J., “Dynamique des fonctions rationnelles sur des corps locaux”, Geometric methods in dynamics, II, Astérisque, 287, Soc. math. France, Paris, 2003, 147–230 | MR | Zbl
[107] Rivera-Letelier J., “Espace hyperbolique $p$-adique et dynamique des fonctions rationnelles”, Compos. Math., 138 (2003), 199–231 | DOI | MR | Zbl
[108] Rivera-Letelier J., Wild recurrent critical points, , 2004 arxiv: math/0406417 | MR
[109] Roberts J. A. G., Vivaldi F., “Signature of time-reversal symmetry in polynomial automorphisms over finite fields”, Nonlinearity, 18:5 (2005), 2171–2192 | DOI | MR | Zbl
[110] Ruelle P., Thiran E., Verstegen D., Weyers J., “Adelic string and superstring amplitudes”, Mod. Phys. Lett. A, 4 (1989), 1745–1752 | DOI | MR
[111] Shparlinski I. E., “On some dynamical systems in finite fields and residue rings”, Discr. and Contin. Dyn. Syst., 17 (2007), 901–917 | DOI | MR | Zbl
[112] Silverman J. H., “Geometric and arithmetic properties of the Hénon map”, Math. Ztschr., 215 (1994), 237–250 | DOI | MR | Zbl
[113] Silverman J. H., “The field of definition for dynamical systems on $\mathbb P^1$”, Compos. Math., 98 (1995), 269–304 | MR | Zbl
[114] Silverman J. H., “Rational functions with a polynomial iterate”, J. Algebra, 180 (1996), 102–110 | DOI | MR | Zbl
[115] Silverman J. H., The arithmetic of dynamical systems, Grad. Texts Math., 241, Springer, New York, 2007 | DOI | MR | Zbl
[116] Svensson P.-A., “Dynamical systems in unramified or totally ramified extensions of the $p$-adic number field”, Ultrametric functional analysis, Proc. Seventh Intern. Conf. on $p$-adic analysis, Contemp. Math., 319, Amer. Math. Soc., Providence, RI, 2003, 405–412 | DOI | MR | Zbl
[117] Thiran E., Verstegen D., Weyers J., “$p$-Adic dynamics”, J. Stat. Phys., 54 (1989), 893–913 | DOI | MR | Zbl
[118] Verstegen D., “$p$-Adic dynamical systems”, Number theory and physics, Springer Proc. Phys., 47, Springer, Berlin, 1990, 235–242 | DOI | MR | Zbl
[119] Vivaldi F., “Dynamics over irreducible polynomials”, Nonlinearity, 5:4 (1992), 941–960 | DOI | MR | Zbl
[120] Vivaldi F., Hatjispyros S., “Galois theory of periodic orbits of rational maps”, Nonlinearity, 5:4 (1992), 961–978 | DOI | MR | Zbl
[121] Vladimirov V. S., Volovich I. V., “Superanaliz. I: Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | MR | Zbl
[122] Vladimirov V. S., Volovich I. V., “Superanaliz. II: Integralnoe ischislenie”, TMF, 60:2 (1984), 169–198 | MR | Zbl
[123] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[124] Volovich I. V., “$p$-Adic string”, Class. and Quantum Grav., 4 (1987), L83–L87 | DOI | MR