Noncommutative Algebraic Dynamics: Ergodic Theory for Profinite Groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 36-65

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to determine transitive polynomials on finite solvable groups, we develop ergodic theory for polynomial transformations on profinite groups with operators.
@article{TM_2009_265_a2,
     author = {V. S. Anashin},
     title = {Noncommutative {Algebraic} {Dynamics:} {Ergodic} {Theory} for {Profinite} {Groups}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {36--65},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a2/}
}
TY  - JOUR
AU  - V. S. Anashin
TI  - Noncommutative Algebraic Dynamics: Ergodic Theory for Profinite Groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 36
EP  - 65
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a2/
LA  - en
ID  - TM_2009_265_a2
ER  - 
%0 Journal Article
%A V. S. Anashin
%T Noncommutative Algebraic Dynamics: Ergodic Theory for Profinite Groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 36-65
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a2/
%G en
%F TM_2009_265_a2
V. S. Anashin. Noncommutative Algebraic Dynamics: Ergodic Theory for Profinite Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 36-65. http://geodesic.mathdoc.fr/item/TM_2009_265_a2/