Unbounded Transforms and Approximation of Functions over $p$-adic Fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 220-228

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions of a $p$-adic variable with values in different spaces. In each case we consider an unbounded integral operator and a corresponding issue. More precisely, we study the Riesz–Volkenborn integral representation of functions with values in a non-Archimedean field, the Vladimirov operator and corresponding vectors of exponential type in spaces of complex-valued functions, and the Fourier transform and its (dis)continuity in spaces of Banach-valued functions.
@article{TM_2009_265_a18,
     author = {A. Radyna and Ya. Radyna and Ya. Radyno},
     title = {Unbounded {Transforms} and {Approximation} of {Functions} over $p$-adic {Fields}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {220--228},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a18/}
}
TY  - JOUR
AU  - A. Radyna
AU  - Ya. Radyna
AU  - Ya. Radyno
TI  - Unbounded Transforms and Approximation of Functions over $p$-adic Fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 220
EP  - 228
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a18/
LA  - en
ID  - TM_2009_265_a18
ER  - 
%0 Journal Article
%A A. Radyna
%A Ya. Radyna
%A Ya. Radyno
%T Unbounded Transforms and Approximation of Functions over $p$-adic Fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 220-228
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a18/
%G en
%F TM_2009_265_a18
A. Radyna; Ya. Radyna; Ya. Radyno. Unbounded Transforms and Approximation of Functions over $p$-adic Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 220-228. http://geodesic.mathdoc.fr/item/TM_2009_265_a18/