Hausdorff Dimension and Hierarchical System Dynamics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 159-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that the Hausdorff dimension may be used to distinguish different relaxation dynamics in hierarchical systems. We examine the hierarchical systems following the temperature-dependent power-law decay and the Kohlrausch law. For our purposes, we consider random walks on $p$-adic integer numbers.
@article{TM_2009_265_a13,
     author = {K. Lukierska-Walasek and K. Topolski},
     title = {Hausdorff {Dimension} and {Hierarchical} {System} {Dynamics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {159--164},
     year = {2009},
     volume = {265},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a13/}
}
TY  - JOUR
AU  - K. Lukierska-Walasek
AU  - K. Topolski
TI  - Hausdorff Dimension and Hierarchical System Dynamics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 159
EP  - 164
VL  - 265
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a13/
LA  - en
ID  - TM_2009_265_a13
ER  - 
%0 Journal Article
%A K. Lukierska-Walasek
%A K. Topolski
%T Hausdorff Dimension and Hierarchical System Dynamics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 159-164
%V 265
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a13/
%G en
%F TM_2009_265_a13
K. Lukierska-Walasek; K. Topolski. Hausdorff Dimension and Hierarchical System Dynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 159-164. http://geodesic.mathdoc.fr/item/TM_2009_265_a13/

[1] Albeverio S., Karwowski W., “A random walk on $p$-adics – the generator and its spectrum”, Stoch. Process. and Appl., 53:1 (1994), 1–22 | DOI | MR | Zbl

[2] Albeverio S., Karwowski W., Zhao X., “Asymptotics and spectral results for random walks on $p$-adics”, Stoch. Process. and Appl., 83:1 (1999), 39–59 | DOI | MR | Zbl

[3] Albeverio S., Zhao X., “A decomposition theorem for Lévy processes on local fields”, J. Theor. Probab., 14 (2001), 1–19 | DOI | MR | Zbl

[4] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. and Gen., 32:50 (1999), 8785–8791 | DOI | MR | Zbl

[5] Avetisov V. A., Bikulov A. H., Kozyrev S. V., Osipov V. A., “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. and Gen., 35:2 (2002), 177–189 | DOI | MR | Zbl

[6] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. and Gen., 36:15 (2003), 4239–4246 | DOI | MR | Zbl

[7] Blumenthal R. M., Getoor R. K., “Some theorems on stable processes”, Trans. Amer. Math. Soc., 95 (1960), 263–273 | DOI | MR | Zbl

[8] Dobierzewska-Mozrzymas E., Biegański P., Pieciul E., Wójcik J., “Statistical description of systems on the basis of the Mandelbrot law: discontinuous metal films on dielectric substrates”, J. Phys.: Condens. Matter., 11:29 (1999), 5561–5568 | DOI

[9] Evans S. N., “Local properties of Lévy processes on a totally disconnected group”, J. Theor. Probab., 2 (1989), 209–259 | DOI | MR | Zbl

[10] Federer H., Geometric measure theory, Grundl. math. Wissensch. Einzeldarst., 153, Springer, Berlin, 1969 | MR | Zbl

[11] Gardiner C. W., Handbook of stochastic methods for physics, chemistry and the natural sciences, Springer, Berlin, 1985 | MR

[12] Gnedenko B. V., Kolmogorov A. N., Limit distributions for sums of independent random variables, Addison-Wesley, Reading, MA, 1968 | MR

[13] Kaneko H., “Time-inhomogeneous stochastic processes on the $p$-adic number field”, Tohoku Math. J., 55 (2003), 65–87 | DOI | MR | Zbl

[14] Khintchine A., “Zur Theorie der unbeschränkt teilbaren Verteilungsgesetze”, Mat. sb., 2(44):1 (1937), 79–119 | Zbl

[15] Khinchin A. Ya., Predelnye zakony dlya summ nezavisimykh sluchainykh velichin, ONTI, M.–L., 1938 | Zbl

[16] Klafter J., Blumen A., Shleisinger M. F., “Stochastic pathway to anomalous diffusion”, Phys. Rev. A, 35:7 (1987), 3081–3085 | DOI | MR

[17] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, M. Dekker, New York, 2001 | MR | Zbl

[18] Kozyrev S. V., Osipov V. A., Avetisov V. A., “Nondegenerate ultrametric diffusion”, J. Math. Phys., 46:6 (2005), Pap. 063302 | DOI | MR

[19] Lévy P., Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937

[20] Lukierska-Walasek K., Topolski K., “Random walk on $p$-adics and hierarchical systems”, Phys. Rev. B, 73:5 (2006), Pap. 054419 | DOI

[21] Mantegna R. N., Stanley H. E., “Scaling behaviour in the dynamics of an economic index”, Nature, 376 (1995), 46–49 | DOI

[22] Mattila P., Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[23] Ogielski A. T., Stein D. L., “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55 (1985), 1634–1637 | DOI | MR

[24] Rogers C. A., Hausdorff measures, Cambridge Univ. Press, Cambridge, 1970 | MR | Zbl

[25] Sato K., Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[26] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adic analysis and mathematical physics, World Sci., Singapore, 1994 | MR | MR | Zbl

[27] West B. J., Deering W., “Fractal physiology for physicists: Lévy statistics”, Phys. Rep., 246 (1994), 1–100 | DOI

[28] Yasuda K., “Additive processes on local fields”, J. Math. Sci. Univ. Tokyo, 3 (1996), 629–654 | MR | Zbl

[29] Zaslavsky G. M., “Fractional kinetic equation for Hamiltonian chaos”, Physica D, 76 (1994), 110–122 | DOI | MR | Zbl

[30] Zimbardo G., Veltri P., Basile G., Principato S., “Anomalous diffusion and Lévy random walk of magnetic field lines in three dimensional turbulence”, Phys. Plasmas, 2 (1995), 2653–2663 | DOI