$p$-Adic Nonorthogonal Wavelet Bases
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 7-18

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing MRA-based $p$-adic wavelet systems that form Riesz bases in $L^2(\mathbb Q_p)$ is developed. The method is implemented for an infinite family of MRAs.
@article{TM_2009_265_a0,
     author = {S. Albeverio and S. Evdokimov and M. Skopina},
     title = {$p${-Adic} {Nonorthogonal} {Wavelet} {Bases}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {265},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_265_a0/}
}
TY  - JOUR
AU  - S. Albeverio
AU  - S. Evdokimov
AU  - M. Skopina
TI  - $p$-Adic Nonorthogonal Wavelet Bases
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 7
EP  - 18
VL  - 265
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_265_a0/
LA  - en
ID  - TM_2009_265_a0
ER  - 
%0 Journal Article
%A S. Albeverio
%A S. Evdokimov
%A M. Skopina
%T $p$-Adic Nonorthogonal Wavelet Bases
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 7-18
%V 265
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_265_a0/
%G en
%F TM_2009_265_a0
S. Albeverio; S. Evdokimov; M. Skopina. $p$-Adic Nonorthogonal Wavelet Bases. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of mathematical physics and $p$-adic analysis, Tome 265 (2009), pp. 7-18. http://geodesic.mathdoc.fr/item/TM_2009_265_a0/