Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 52-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

I propose three equivalent conjectures on the birational geometry of Fano 3-folds. Roughly speaking, they suggest that ergodic, or chaotic, behaviour does not occur for Fano 3-folds.
@article{TM_2009_264_a4,
     author = {A. Corti},
     title = {Three {Equivalent} {Conjectures} on the {Birational} {Geometry} of {Fano} 3-folds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--54},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a4/}
}
TY  - JOUR
AU  - A. Corti
TI  - Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 52
EP  - 54
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a4/
LA  - en
ID  - TM_2009_264_a4
ER  - 
%0 Journal Article
%A A. Corti
%T Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 52-54
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a4/
%G en
%F TM_2009_264_a4
A. Corti. Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 52-54. http://geodesic.mathdoc.fr/item/TM_2009_264_a4/

[1] Brown G., Corti A., Zucconi F., “Birational geometry of 3-fold Mori fibre spaces”, The Fano Conference (Torino, Italy, 2002), Univ. Torino, Torino, 2004, 235–275 | MR | Zbl

[2] Brown G., Zucconi F., “Graded rings of rank 2 Sarkisov links”, Nagoya Math. J. (to appear)

[3] Corti A., “Factoring birational maps of threefolds after Sarkisov”, J. Alg. Geom., 4:2 (1995), 223–254 | MR | Zbl

[4] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit birational geometry of 3-folds, LMS Lect. Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[5] Hassett B., “Special cubic fourfolds”, Compos. Math., 120:1 (2000), 1–23 | DOI | MR | Zbl

[6] Iskovskikh V. A., “On the rationality problem for conic bundles”, Duke Math. J., 54:2 (1987), 271–294 | DOI | MR | Zbl

[7] Iskovskikh V. A., “Faktorizatsiya biratsionalnykh otobrazhenii ratsionalnykh poverkhnostei s tochki zreniya teorii Mori”, UMN, 51:4 (1996), 3–72 | DOI | MR | Zbl

[8] Kawamata Y., “Boundedness of $\mathbf Q$-Fano threefolds”, Proc. Intern. Conf. on Algebra, Pt. 3 (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 439–445 | DOI | MR

[9] Kollár J., Miyaoka Y., Mori S., Takagi H., “Boundedness of canonical $\mathbf Q$-Fano 3-folds”, Proc. Japan Acad. A: Math. Sci., 76:5 (2000), 73–77 | DOI | MR | Zbl

[10] Tregub S. L., “Tri konstruktsii ratsionalnosti chetyrekhmernoi kubiki”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1984, no. 3, 8–14 | MR | Zbl

[11] Tregub S. L., “Dva zamechaniya o chetyrekhmernoi kubike”, UMN, 48:2 (1993), 201–202 | MR | Zbl