Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 52-54

Voir la notice de l'article provenant de la source Math-Net.Ru

I propose three equivalent conjectures on the birational geometry of Fano 3-folds. Roughly speaking, they suggest that ergodic, or chaotic, behaviour does not occur for Fano 3-folds.
@article{TM_2009_264_a4,
     author = {A. Corti},
     title = {Three {Equivalent} {Conjectures} on the {Birational} {Geometry} of {Fano} 3-folds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--54},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a4/}
}
TY  - JOUR
AU  - A. Corti
TI  - Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 52
EP  - 54
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a4/
LA  - en
ID  - TM_2009_264_a4
ER  - 
%0 Journal Article
%A A. Corti
%T Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 52-54
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a4/
%G en
%F TM_2009_264_a4
A. Corti. Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 52-54. http://geodesic.mathdoc.fr/item/TM_2009_264_a4/