Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 52-54
Voir la notice de l'article provenant de la source Math-Net.Ru
I propose three equivalent conjectures on the birational geometry of Fano 3-folds. Roughly speaking, they suggest that ergodic, or chaotic, behaviour does not occur for Fano 3-folds.
@article{TM_2009_264_a4,
author = {A. Corti},
title = {Three {Equivalent} {Conjectures} on the {Birational} {Geometry} of {Fano} 3-folds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {52--54},
publisher = {mathdoc},
volume = {264},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a4/}
}
A. Corti. Three Equivalent Conjectures on the Birational Geometry of Fano 3-folds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 52-54. http://geodesic.mathdoc.fr/item/TM_2009_264_a4/