Extremal Metrics on del Pezzo Threefolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 37-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of Kähler–Einstein metrics on a nonsingular section of the Grassmannian $\mathrm{Gr}(2,5)\subset\mathbb P^9$ by a linear subspace of codimension 3 and on the Fermat hypersurface of degree 6 in $\mathbb P(1,1,1,2,3)$. We also show that a global log canonical threshold of the Mukai–Umemura variety is equal to 1/2.
@article{TM_2009_264_a3,
     author = {I. A. Cheltsov and K. A. Shramov},
     title = {Extremal {Metrics} on del {Pezzo} {Threefolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a3/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - K. A. Shramov
TI  - Extremal Metrics on del Pezzo Threefolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 37
EP  - 51
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a3/
LA  - ru
ID  - TM_2009_264_a3
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A K. A. Shramov
%T Extremal Metrics on del Pezzo Threefolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 37-51
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a3/
%G ru
%F TM_2009_264_a3
I. A. Cheltsov; K. A. Shramov. Extremal Metrics on del Pezzo Threefolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 37-51. http://geodesic.mathdoc.fr/item/TM_2009_264_a3/

[1] Grinenko M. M., “O dvoinom konuse nad poverkhnostyu Veroneze”, Izv. RAN. Ser. mat., 67:3 (2003), 5–22 | DOI | MR | Zbl

[2] Grinenko M. M., “Struktury Mori na trekhmernom mnogoobrazii Fano indeksa 2 i stepeni 1”, Tr. MIAN, 246, 2004, 116–141 | MR | Zbl

[3] Prokhorov Yu. G., “Gruppy avtomorfizmov mnogoobrazii Fano”, UMN, 45:3 (1990), 195–196 | MR | Zbl

[4] Pukhlikov A. V., “Biratsionalnaya geometriya pryamykh proizvedenii Fano”, Izv. RAN. Ser. mat., 69:6 (2005), 153–186 | DOI | MR | Zbl

[5] Cheltsov I. A., “Log-kanonicheskie porogi na giperpoverkhnostyakh”, Mat. sb., 192:8 (2001), 155–172 | DOI | MR | Zbl

[6] Cheltsov I. A., “Ekstremalnye metriki na dvukh mnogoobraziyakh Fano”, Mat. sb., 200:1 (2009), 97–136 | DOI | MR | Zbl

[7] Cheltsov I. A., Shramov K. A., “Log-kanonicheskie porogi neosobykh trekhmernykh mnogoobrazii Fano”, UMN, 63:5 (2008), 73–180 | DOI | MR | Zbl

[8] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–203 | MR | Zbl

[9] Arezzo C., Ghigi A., Pirola G. P., “Symmetries, quotients and Kähler–Einstein metrics”, J. reine und angew. Math., 591 (2006), 177–200 | MR | Zbl

[10] Cheltsov I., “Fano varieties with many selfmaps”, Adv. Math., 217 (2008), 97–124 | DOI | MR | Zbl

[11] Cheltsov I., “Log canonical thresholds of del Pezzo surfaces”, Geom. and Funct. Anal., 18 (2008), 1118–1144 | DOI | MR | Zbl

[12] Cheltsov I., Park J., Won J., Log canonical thresholds of certain Fano hypersurfaces, E-print , 2007 arXiv: 0706.0751 | MR

[13] Demailly J.-P., Kollár J., “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. École Norm. Supér., 34 (2001), 525–556 | MR | Zbl

[14] Donaldson S. K., A note on the $\alpha$-invariant of the Mukai–Umemura 3-fold, E-print , 2007 arXiv: 0711.4357 | MR

[15] Furushima M., “Complex analytic compactifications of $\mathbb C^3$”, Compos. Math., 76 (1990), 163–196 | MR | Zbl

[16] Furushima M., “Mukai–Umemura's example of the Fano threefold with genus 12 as a compactification of $\mathbb C^3$”, Nagoya Math. J., 127 (1992), 145–165 | MR | Zbl

[17] Hwang J.-M., “Log canonical thresholds of divisors on Fano manifolds of Picard number 1”, Compos. Math., 143 (2007), 89–94 | DOI | MR | Zbl

[18] Iano-Fletcher A. R., “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, LMS Lect. Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR

[19] Iskovskikh V. A., Prokhorov Yu. G., Fano varieties, Encycl. Math. Sci., 47, Springer, Berlin, 1999 | MR | Zbl

[20] Kollár J., “Singularities of pairs”, Proc. Symp. Pure Math., 62 (1997), 221–287 | DOI | MR | Zbl

[21] Lazarsfeld R., Positivity in algebraic geometry, V. 2, Springer, Berlin, 2004

[22] Mukai S., Umemura H., “Minimal rational threefolds”, Algebraic geometry, Lect. Notes Math., 1016, Springer, Berlin, 1983, 490–518 | DOI | MR

[23] Nadel A., “Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature”, Ann. Math., 132 (1990), 549–596 | DOI | MR | Zbl

[24] Prokhorov Yu. G., Markushevich D., “Exceptional quotient singularities”, Amer. J. Math., 121 (1999), 1179–1189 | DOI | MR | Zbl

[25] Tian G., “On Kähler–Einstein metrics on certain Kähler manifolds with $C_1(M)>0$”, Invent. math., 89 (1987), 225–246 | DOI | MR | Zbl

[26] Wang X.-J., Zhu X., “Kähler–Ricci solitons on toric manifolds with positive first Chern class”, Adv. Math., 188 (2004), 87–103 | DOI | MR | Zbl

[27] Zhang Q., “Rational connectedness of log $\mathbb Q$-Fano varieties”, J. reine und angew. Math., 590 (2006), 131–142 | MR | Zbl