Extremal Metrics on del Pezzo Threefolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 37-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of Kähler–Einstein metrics on a nonsingular section of the Grassmannian $\mathrm{Gr}(2,5)\subset\mathbb P^9$ by a linear subspace of codimension 3 and on the Fermat hypersurface of degree 6 in $\mathbb P(1,1,1,2,3)$. We also show that a global log canonical threshold of the Mukai–Umemura variety is equal to 1/2.
@article{TM_2009_264_a3,
     author = {I. A. Cheltsov and K. A. Shramov},
     title = {Extremal {Metrics} on del {Pezzo} {Threefolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a3/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - K. A. Shramov
TI  - Extremal Metrics on del Pezzo Threefolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 37
EP  - 51
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a3/
LA  - ru
ID  - TM_2009_264_a3
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A K. A. Shramov
%T Extremal Metrics on del Pezzo Threefolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 37-51
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a3/
%G ru
%F TM_2009_264_a3
I. A. Cheltsov; K. A. Shramov. Extremal Metrics on del Pezzo Threefolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 37-51. http://geodesic.mathdoc.fr/item/TM_2009_264_a3/