Stable Higgs Bundles with Trivial Chern Classes. Several Examples
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 129-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new interpretation of Higgs bundles as vector bundles together with actions of the symmetric tangent tensor algebra. Via this interpretation, we construct new nontrivial examples of stable Higgs bundles with vanishing Chern classes.
@article{TM_2009_264_a14,
     author = {Y. Miyaoka},
     title = {Stable {Higgs} {Bundles} with {Trivial} {Chern} {Classes.} {Several} {Examples}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a14/}
}
TY  - JOUR
AU  - Y. Miyaoka
TI  - Stable Higgs Bundles with Trivial Chern Classes. Several Examples
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 129
EP  - 136
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a14/
LA  - en
ID  - TM_2009_264_a14
ER  - 
%0 Journal Article
%A Y. Miyaoka
%T Stable Higgs Bundles with Trivial Chern Classes. Several Examples
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 129-136
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a14/
%G en
%F TM_2009_264_a14
Y. Miyaoka. Stable Higgs Bundles with Trivial Chern Classes. Several Examples. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 129-136. http://geodesic.mathdoc.fr/item/TM_2009_264_a14/

[1] Bogomolov F. A., “Golomorfnye tenzory i vektornye rassloeniya na proektivnykh mnogoobraziyakh”, Izv. AN SSSR. Ser. mat., 42:6 (1978), 1227–1287 | MR | Zbl

[2] Donaldson S. K., “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable bundles”, Proc. London Math. Soc. Ser. 3, 50 (1985), 1–26 | DOI | MR | Zbl

[3] Gieseker D., “On a theorem of Bogomolov on Chern classes of stable bundles”, Amer. J. Math., 101 (1979), 77–85 | DOI | MR | Zbl

[4] Hirzebruch F., “Arrangements of lines and algebraic surfaces”, Arithmetic and geometry. V. 2: Geometry, Progr. Math., 36, Birkhäuser, Boston, 1983, 113–140 | MR

[5] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc. Ser. 3, 55 (1987), 59–126 | DOI | MR | Zbl

[6] Ishida M.-N., “The irregularities of Hirzebruch's examples of surfaces of general type with $c_1^2=3c_2$”, Math. Ann., 262 (1983), 407–420 | DOI | MR | Zbl

[7] Langer A., “A note on Bogomolov's instability and Higgs sheaves”, Algebraic geometry, A volume in memory of Paolo Francia, de Gruyter, Berlin, 2002, 237–256 | MR | Zbl

[8] Miyaoka Y., “The Chern classes and Kodaira dimension of a minimal variety”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, Kinokuniya, Tokyo, 1987, 449–476 | MR

[9] Simpson C., “Higgs bundles and local systems”, Publ. Math. IHES, 75 (1992), 5–95 | DOI | MR | Zbl

[10] Yau S.-T., “On Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1798–1799 | DOI | MR | Zbl