Generalized Homological Mirror Symmetry and Cubics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 94-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss an approach to studying Fano manifolds based on Homological Mirror Symmetry. We consider some classical examples from a new point of view.
@article{TM_2009_264_a10,
     author = {L. Katzarkov and V. Przyjalkowski},
     title = {Generalized {Homological} {Mirror} {Symmetry} and {Cubics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {94--102},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a10/}
}
TY  - JOUR
AU  - L. Katzarkov
AU  - V. Przyjalkowski
TI  - Generalized Homological Mirror Symmetry and Cubics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 94
EP  - 102
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a10/
LA  - en
ID  - TM_2009_264_a10
ER  - 
%0 Journal Article
%A L. Katzarkov
%A V. Przyjalkowski
%T Generalized Homological Mirror Symmetry and Cubics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 94-102
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a10/
%G en
%F TM_2009_264_a10
L. Katzarkov; V. Przyjalkowski. Generalized Homological Mirror Symmetry and Cubics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 94-102. http://geodesic.mathdoc.fr/item/TM_2009_264_a10/