Colored Graphs and Matrix Integrals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 8-24
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss applications of generating functions for colored graphs to asymptotic expansions of matrix integrals. The described technique provides an asymptotic expansion of the Kontsevich integral. We prove that this expansion is a refinement of the Kontsevich expansion, which is the sum over the set of classes of isomorphic ribbon graphs. This yields a proof of Kontsevich's results that is independent of the Feynman graph technique.
@article{TM_2009_264_a1,
author = {I. V. Artamkin},
title = {Colored {Graphs} and {Matrix} {Integrals}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {8--24},
publisher = {mathdoc},
volume = {264},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a1/}
}
I. V. Artamkin. Colored Graphs and Matrix Integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 8-24. http://geodesic.mathdoc.fr/item/TM_2009_264_a1/