Colored Graphs and Matrix Integrals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 8-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss applications of generating functions for colored graphs to asymptotic expansions of matrix integrals. The described technique provides an asymptotic expansion of the Kontsevich integral. We prove that this expansion is a refinement of the Kontsevich expansion, which is the sum over the set of classes of isomorphic ribbon graphs. This yields a proof of Kontsevich's results that is independent of the Feynman graph technique.
@article{TM_2009_264_a1,
     author = {I. V. Artamkin},
     title = {Colored {Graphs} and {Matrix} {Integrals}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {8--24},
     publisher = {mathdoc},
     volume = {264},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_264_a1/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Colored Graphs and Matrix Integrals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 8
EP  - 24
VL  - 264
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_264_a1/
LA  - ru
ID  - TM_2009_264_a1
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Colored Graphs and Matrix Integrals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 8-24
%V 264
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_264_a1/
%G ru
%F TM_2009_264_a1
I. V. Artamkin. Colored Graphs and Matrix Integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Multidimensional algebraic geometry, Tome 264 (2009), pp. 8-24. http://geodesic.mathdoc.fr/item/TM_2009_264_a1/

[1] Artamkin I. V., Coloured graphs, Burgers equation and Jacobian conjecture, Preprint MPIM2006-98, Max-Planck-Inst., Bonn, 2006 | MR

[2] Artamkin I. V., “Proizvodyaschie funktsii modulyarnykh grafov i uravnenie Byurgersa”, Mat. sb., 196:12 (2005), 3–32 | DOI | MR | Zbl

[3] Bessis D., Itzykson C., Zuber J.-B., “Quantum field theory techniques in graphical enumeration”, Adv. Appl. Math., 1 (1980), 109–157 | DOI | MR | Zbl

[4] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl

[5] Lando S. K., Zvonkin A. K., Graphs on surfaces and their applications, Springer, Berlin, 2004 | MR | Zbl

[6] Tyurin A., Quantization, classical and quantum field theories and theta functions, CRM Monogr. Ser., 21, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl