Minimal Peano Curve
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 251-271
Cet article a éte moissonné depuis la source Math-Net.Ru
A Peano curve $p(x)$ with maximum square-to-linear ratio $\frac{|p(x)-p(y)|^2}{|x-y|}$ equal to $5\frac23$ is constructed; this ratio is smaller than that of the classical Peano–Hilbert curve, whose maximum square-to-linear ratio is 6. The curve constructed is of fractal genus 9 (i.e., it is decomposed into nine fragments that are similar to the whole curve) and of diagonal type (i.e., it intersects a square starting from one corner and ending at the opposite corner). It is proved that this curve is a unique (up to isometry) regular diagonal Peano curve of fractal genus 9 whose maximum square-to-linear ratio is less than 6. A theory is developed that allows one to find the maximum square-to-linear ratio of a regular Peano curve on the basis of computer calculations.
@article{TM_2008_263_a16,
author = {E. V. Shchepin and K. E. Bauman},
title = {Minimal {Peano} {Curve}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {251--271},
year = {2008},
volume = {263},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2008_263_a16/}
}
E. V. Shchepin; K. E. Bauman. Minimal Peano Curve. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 251-271. http://geodesic.mathdoc.fr/item/TM_2008_263_a16/
[1] Schepin E. V., “Povyshayuschie razmernost otobrazheniya i nepreryvnaya peredacha informatsii”, Voprosy chistoi i prikladnoi matematiki, T. 1, Priok. kn. izd-vo, Tula, 1987, 148–155
[2] Schepin E. V., “O fraktalnykh krivykh Peano”, Tr. MIAN, 247, Nauka, M., 2004, 294–303 | MR | Zbl
[3] Schepin E. V., Bauman K. E., “O krivykh Peano fraktalnogo roda 9”, Modelirovanie i analiz dannykh, Tr. fak. inform. tekhnol. MGPPU, Vyp. 1, Rusavia, M., 2004, 79–89
[4] Bauman K. E., “Koeffitsient rastyazheniya krivoi Peano–Gilberta”, Mat. zametki, 80:5 (2006), 643–656 | MR | Zbl