Lax Operator Algebras and Integrable Hierarchies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 216-226

Voir la notice de l'article provenant de la source Math-Net.Ru

We study applications of a new class of infinite-dimensional Lie algebras, called Lax operator algebras, which goes back to the works by I. Krichever and S. Novikov on finite-zone integration related to holomorphic vector bundles and on Lie algebras on Riemann surfaces. Lax operator algebras are almost graded Lie algebras of current type. They were introduced by I. Krichever and the author as a development of the theory of Lax operators on Riemann surfaces due to I. Krichever, and further investigated in a joint paper by M. Schlichenmaier and the author. In this article we construct integrable hierarchies of Lax equations of that type.
@article{TM_2008_263_a14,
     author = {O. K. Sheinman},
     title = {Lax {Operator} {Algebras} and {Integrable} {Hierarchies}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {216--226},
     publisher = {mathdoc},
     volume = {263},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_263_a14/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Lax Operator Algebras and Integrable Hierarchies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 216
EP  - 226
VL  - 263
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_263_a14/
LA  - ru
ID  - TM_2008_263_a14
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Lax Operator Algebras and Integrable Hierarchies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 216-226
%V 263
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_263_a14/
%G ru
%F TM_2008_263_a14
O. K. Sheinman. Lax Operator Algebras and Integrable Hierarchies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and mathematical physics. I, Tome 263 (2008), pp. 216-226. http://geodesic.mathdoc.fr/item/TM_2008_263_a14/