Envelope Singularities of Families of Planes in Control Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 73-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic singularities of the local transitivity set for control systems with nonconvex indicatrix on three-dimensional manifolds are classified. A simple recognition criterion for generic singularities of envelopes of bi-tangents to space curves is described.
@article{TM_2008_262_a6,
     author = {V. M. Zakalyukin and A. N. Kurbatskii},
     title = {Envelope {Singularities} of {Families} of {Planes} in {Control} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {73--86},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a6/}
}
TY  - JOUR
AU  - V. M. Zakalyukin
AU  - A. N. Kurbatskii
TI  - Envelope Singularities of Families of Planes in Control Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 73
EP  - 86
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a6/
LA  - ru
ID  - TM_2008_262_a6
ER  - 
%0 Journal Article
%A V. M. Zakalyukin
%A A. N. Kurbatskii
%T Envelope Singularities of Families of Planes in Control Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 73-86
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a6/
%G ru
%F TM_2008_262_a6
V. M. Zakalyukin; A. N. Kurbatskii. Envelope Singularities of Families of Planes in Control Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 73-86. http://geodesic.mathdoc.fr/item/TM_2008_262_a6/

[1] Zalgaller V. A., Teoriya ogibayuschikh, Nauka, M., 1975, 104 pp. | MR | Zbl

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, 2-e izd., MTsNMO, M., 2004, 672 pp. | MR

[3] Giblin P. J., Zakalyukin V. M., “Singularities of centre symmetry sets”, Proc. London Math. Soc. Ser. 3, 90 (2005), 132–166 | DOI | MR | Zbl

[4] Izumiya S., Takeuchi N., “Singularities of ruled surfaces in $\mathbb R^3$”, Math. Proc. Cambridge Phil. Soc., 130:1 (2001), 1–11 | DOI | MR | Zbl

[5] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy otobrazheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR | Zbl

[6] Stunzhas L. P., “Lokalnye osobennosti khordovykh mnozhestv”, Mat. zametki, 83:2 (2008), 286–304 | MR | Zbl

[7] Zakalyukin V. M., “Osobennosti vypuklykh obolochek gladkikh mnogoobrazii”, Funkts. analiz i ego pril., 11:3 (1977), 76–77 | MR | Zbl