Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2008_262_a6, author = {V. M. Zakalyukin and A. N. Kurbatskii}, title = {Envelope {Singularities} of {Families} of {Planes} in {Control} {Theory}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {73--86}, publisher = {mathdoc}, volume = {262}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a6/} }
TY - JOUR AU - V. M. Zakalyukin AU - A. N. Kurbatskii TI - Envelope Singularities of Families of Planes in Control Theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 73 EP - 86 VL - 262 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_262_a6/ LA - ru ID - TM_2008_262_a6 ER -
V. M. Zakalyukin; A. N. Kurbatskii. Envelope Singularities of Families of Planes in Control Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 73-86. http://geodesic.mathdoc.fr/item/TM_2008_262_a6/
[1] Zalgaller V. A., Teoriya ogibayuschikh, Nauka, M., 1975, 104 pp. | MR | Zbl
[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, 2-e izd., MTsNMO, M., 2004, 672 pp. | MR
[3] Giblin P. J., Zakalyukin V. M., “Singularities of centre symmetry sets”, Proc. London Math. Soc. Ser. 3, 90 (2005), 132–166 | DOI | MR | Zbl
[4] Izumiya S., Takeuchi N., “Singularities of ruled surfaces in $\mathbb R^3$”, Math. Proc. Cambridge Phil. Soc., 130:1 (2001), 1–11 | DOI | MR | Zbl
[5] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy otobrazheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR | Zbl
[6] Stunzhas L. P., “Lokalnye osobennosti khordovykh mnozhestv”, Mat. zametki, 83:2 (2008), 286–304 | MR | Zbl
[7] Zakalyukin V. M., “Osobennosti vypuklykh obolochek gladkikh mnogoobrazii”, Funkts. analiz i ego pril., 11:3 (1977), 76–77 | MR | Zbl