Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 222-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear optimal control problem with an integral functional in which the integrand contains the characteristic function of a given closed subset of the phase space. Using an approximation method, we prove necessary optimality conditions in the form of the Pontryagin maximum principle without any a priori assumptions about the behavior of an optimal trajectory.
@article{TM_2008_262_a16,
     author = {A. I. Smirnov},
     title = {Necessary {Optimality} {Conditions} for {a~Class} of {Optimal} {Control} {Problems} with {Discontinuous} {Integrand}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {222--239},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a16/}
}
TY  - JOUR
AU  - A. I. Smirnov
TI  - Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 222
EP  - 239
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a16/
LA  - ru
ID  - TM_2008_262_a16
ER  - 
%0 Journal Article
%A A. I. Smirnov
%T Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 222-239
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a16/
%G ru
%F TM_2008_262_a16
A. I. Smirnov. Necessary Optimality Conditions for a~Class of Optimal Control Problems with Discontinuous Integrand. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 222-239. http://geodesic.mathdoc.fr/item/TM_2008_262_a16/

[1] Arutyunov A. V., “K neobkhodimym usloviyam optimalnosti v zadache s fazovymi ogranicheniyami”, DAN SSSR, 280:5 (1985), 1033–1037 | MR | Zbl

[2] Arutyunov A. V., “Neobkhodimye usloviya pervogo poryadka v zadache optimalnogo upravleniya s fazovymi ogranicheniyami”, Tr. In-ta prikl. mat. Tbil. gos. un-ta, 27 (1988), 46–59 | MR | Zbl

[3] Arutyunov A. V., “K teorii printsipa maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, DAN SSSR, 304:1 (1989), 11–14 | MR | Zbl

[4] Arutyunov A. V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhniki. Ser. Matematicheskii analiz, 27, VINITI, M., 1989, 147–235 | MR

[5] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[6] Arutyunov A. V., Aseev S. M., “Printsip maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami. Nevyrozhdennost i ustoichivost”, DAN, 334:2 (1994), 134–137 | MR | Zbl

[7] Arutyunov A. V., Aseev S. M., Blagodatskikh V. I., “Neobkhodimye usloviya pervogo poryadka v zadache optimalnogo upravleniya differentsialnym vklyucheniem s fazovymi ogranicheniyami”, Mat. sb., 184:6 (1993), 3–32 | MR | Zbl

[8] Arutyunov A. V., Tynyanskii N. T., “O printsipe maksimuma v zadache s fazovymi ogranicheniyami”, Izv. AN SSSR. Ser. tekhn. kibern., 1984, no. 4, 60–68 | MR | Zbl

[9] Aseev S. M., “Metod gladkikh approksimatsii v teorii neobkhodimykh uslovii optimalnosti dlya differentsialnykh vklyuchenii”, Izv. RAN. Ser. mat., 61:2 (1997), 3–26 | MR | Zbl

[10] Aseev S. M., “Ekstremalnye zadachi dlya differentsialnykh vklyuchenii s fazovymi ogranicheniyami”, Tr. MIAN, 233, Nauka, M., 2001, 5–70 | MR | Zbl

[11] Aseev S. M., Kryazhimskii A. V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR

[12] Aseev S. M., Kryazhimskii A. V., Tarasev A. M., “Printsip maksimuma Pontryagina i usloviya transversalnosti dlya odnoi zadachi optimalnogo upravleniya na beskonechnom intervale”, Tr. MIAN, 233, Nauka, M., 2001, 71–88 | MR | Zbl

[13] Aseev S. M., Smirnov A. I., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, DAN, 395:5 (2004), 583–585 | MR | Zbl

[14] Aseev S. M., Smirnov A. I., “Neobkhodimye usloviya optimalnosti pervogo poryadka dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Nelineinaya dinamika i upravlenie, Vyp. 4, eds. S. V. Emelyanov, S. K. Korovin, Fizmatlit, M., 2004, 179–204

[15] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[16] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[17] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[18] Otakulov S., Ochilov S., “O zadache optimizatsii vremeni prokhozhdeniya cherez oblast”, Sovremennye metody v teorii kraevykh zadach, Tez. dokl. Voronezh. vesen. mat. shk. “Pontryaginskie chteniya – X” (Voronezh, 3–9 maya 1999 g.), Voronezh, 1999, 189

[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | Zbl

[20] Pshenichnyi B. N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8 | MR

[21] Pshenichnyi B. N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15 | MR

[22] Pshenichnyi B. N., Neobkhodimye usloviya ekstremuma, Nauka, M., 1982 | MR

[23] Edvards R., Funktsionalnyi analiz: Teoriya i prilozheniya, Mir, M., 1969

[24] Arutyunov A. V., Aseev S. M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control and Optim., 35:3 (1997), 930–952 | DOI | MR | Zbl

[25] Aseev S. M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR | Zbl

[26] Cesari L., Optimization – theory and applications. Problems with ordinary differential equations, Springer, New York, 1983 | MR | Zbl