Method of Controlled Models in the Problem of Reconstructing a~Boundary Input
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 178-186

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of dynamic reconstruction of boundary controls in a nonlinear parabolic equation is considered. In the case of a control concentrated in the Neumann boundary conditions, a solution algorithm is described, which is stable with respect to the information noise and calculation errors. The algorithm is based on the construction of feedback-controlled auxiliary models.
@article{TM_2008_262_a12,
     author = {V. I. Maksimov},
     title = {Method of {Controlled} {Models} in the {Problem} of {Reconstructing} {a~Boundary} {Input}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {178--186},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a12/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - Method of Controlled Models in the Problem of Reconstructing a~Boundary Input
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 178
EP  - 186
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a12/
LA  - ru
ID  - TM_2008_262_a12
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T Method of Controlled Models in the Problem of Reconstructing a~Boundary Input
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 178-186
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a12/
%G ru
%F TM_2008_262_a12
V. I. Maksimov. Method of Controlled Models in the Problem of Reconstructing a~Boundary Input. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 178-186. http://geodesic.mathdoc.fr/item/TM_2008_262_a12/