Geometric Properties of Successful Solvability Sets in Pursuit Game Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the properties of solutions to pursuit–evasion game problems. We study such properties as the connectedness and continuous time dependence of the sections of the successful solvability set. We obtain a sufficient condition for the connectedness and continuous time dependence of sections.
@article{TM_2008_262_a1,
     author = {Yu. V. Averboukh},
     title = {Geometric {Properties} of {Successful} {Solvability} {Sets} in {Pursuit} {Game} {Problems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {8--15},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a1/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Geometric Properties of Successful Solvability Sets in Pursuit Game Problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 8
EP  - 15
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a1/
LA  - ru
ID  - TM_2008_262_a1
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Geometric Properties of Successful Solvability Sets in Pursuit Game Problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 8-15
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a1/
%G ru
%F TM_2008_262_a1
Yu. V. Averboukh. Geometric Properties of Successful Solvability Sets in Pursuit Game Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 8-15. http://geodesic.mathdoc.fr/item/TM_2008_262_a1/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[3] Averbukh Yu. V., “K voprosu o strukture mnozhestva pozitsionnogo pogloscheniya v igrovoi zadache navedeniya”, Problemy upravleniya i informatiki, 2006, no. 3, 5–9 | MR

[4] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., Izhevsk; Moskva, 2003

[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005 | MR