Global Dynamics of Morse--Smale Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 115-139

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a survey of relatively recent results on the classification of Morse–Smale dynamical systems on closed manifolds. It also contains both old and relatively recent results on the relationship between the topology of the ambient manifold and the dynamical characteristics of Morse–Smale systems.
@article{TM_2008_261_a9,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Global {Dynamics} of {Morse--Smale} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {115--139},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a9/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Global Dynamics of Morse--Smale Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 115
EP  - 139
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_261_a9/
LA  - ru
ID  - TM_2008_261_a9
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Global Dynamics of Morse--Smale Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 115-139
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_261_a9/
%G ru
%F TM_2008_261_a9
E. V. Zhuzhoma; V. S. Medvedev. Global Dynamics of Morse--Smale Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 115-139. http://geodesic.mathdoc.fr/item/TM_2008_261_a9/