How Humans Control Arm Movements
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the behavior of human arms during pointing movements. Several assumptions have already been made about the planning of such motions. None of these assumptions is able, up to now, to explain certain nonintuitive dynamic phenomena, in particular certain asymmetries in the motion and certain time intervals of inactivity of the muscles. In this paper, we propose an assumption explaining all these phenomena. Two strong points in this work are the following. First, our assumption is that human beings minimize a certain criterion that physically makes sense, namely, a compromise between the absolute work of external forces and a comfort term. Second, our conclusions do not rely on any numerical experiment and are completely justified mathematically (i.e., without any argument from simulation or “experimental mathematics,” such arguments being usually considered as acceptable in neurobiology). Also, the conclusion that total inactivity holds during some time subintervals of the movement is shown to be a stable property (in our model).
@article{TM_2008_261_a4,
     author = {B. Berret and J.-P. Gauthier and Ch. Papaxanthis},
     title = {How {Humans} {Control} {Arm} {Movements}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a4/}
}
TY  - JOUR
AU  - B. Berret
AU  - J.-P. Gauthier
AU  - Ch. Papaxanthis
TI  - How Humans Control Arm Movements
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 47
EP  - 60
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_261_a4/
LA  - en
ID  - TM_2008_261_a4
ER  - 
%0 Journal Article
%A B. Berret
%A J.-P. Gauthier
%A Ch. Papaxanthis
%T How Humans Control Arm Movements
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 47-60
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_261_a4/
%G en
%F TM_2008_261_a4
B. Berret; J.-P. Gauthier; Ch. Papaxanthis. How Humans Control Arm Movements. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 47-60. http://geodesic.mathdoc.fr/item/TM_2008_261_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Lee E. B., Markus L., Foundations of optimal control theory, J. Wiley and Sons, New York, 1967 | MR | Zbl

[3] Gauthier J.-P., Kupka I., Deterministic observation theory and applications, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[4] Todorov E., “Optimality principles in sensorimotor control”, Nat. Neurosci., 7:9 (2004), 907–915 | DOI

[5] Papaxanthis C., Pozzo T., Schieppati M., “Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed”, Exp. Brain Res., 148:4 (2003), 498–503

[6] Gentili R., Cahouet V., Papaxanthis C., “Motor planning of arm movements is direction-dependent in the gravity field”, Neuroscience, 145:1 (2007), 20–32 | DOI | MR