On the Poincar\'e Inequality for Periodic Composite Structures
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 301-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider periodic composite structures characterized by a periodic Borel measure equal to the sum of at least two periodic measures. For such a composite structure, verifying the Poincaré inequality may be a difficult problem. Thus, we are interested in finding conditions under which it suffices to verify the Poincaré inequality separately for each of the simpler structure components instead of verifying it for the composite structure.
@article{TM_2008_261_a23,
     author = {V. V. Shumilova},
     title = {On the {Poincar\'e} {Inequality} for {Periodic} {Composite} {Structures}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {301--303},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a23/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - On the Poincar\'e Inequality for Periodic Composite Structures
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 301
EP  - 303
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_261_a23/
LA  - ru
ID  - TM_2008_261_a23
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T On the Poincar\'e Inequality for Periodic Composite Structures
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 301-303
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_261_a23/
%G ru
%F TM_2008_261_a23
V. V. Shumilova. On the Poincar\'e Inequality for Periodic Composite Structures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 301-303. http://geodesic.mathdoc.fr/item/TM_2008_261_a23/

[1] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. mat., 66:2 (2002), 81–148 | MR | Zbl

[2] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl

[3] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[4] Shumilova V. V., “O printsipe kompaktnosti dlya periodicheskikh singulyarnykh i tonkikh struktur”, Mat. zametki, 79:2 (2006), 244–253 | MR | Zbl