$G$-Convergence of Systems of Generalized Beltrami Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 268-275
Voir la notice du chapitre de livre
Many problems of mathematical physics lead to problems of $G$-convergence of differential operators and, in particular, to the problem of homogenization of partial differential operators. Similar problems arise in elasticity theory, electrodynamics, and other fields of physics and mechanics. In this paper, we consider the problem of $G$-convergence of systems of Beltrami operators. We prove that the class of such systems is $G$-compact and study the properties of $G$-convergence.
@article{TM_2008_261_a20,
author = {M. M. Sirazhudinov and R. M. Sirazhudinov},
title = {$G${-Convergence} of {Systems} of {Generalized} {Beltrami} {Equations}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {268--275},
year = {2008},
volume = {261},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a20/}
}
TY - JOUR AU - M. M. Sirazhudinov AU - R. M. Sirazhudinov TI - $G$-Convergence of Systems of Generalized Beltrami Equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 268 EP - 275 VL - 261 UR - http://geodesic.mathdoc.fr/item/TM_2008_261_a20/ LA - ru ID - TM_2008_261_a20 ER -
M. M. Sirazhudinov; R. M. Sirazhudinov. $G$-Convergence of Systems of Generalized Beltrami Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 268-275. http://geodesic.mathdoc.fr/item/TM_2008_261_a20/
[1] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl
[2] Sirazhudinov M. M., “O $G$-kompaktnosti odnogo klassa ellipticheskikh sistem pervogo poryadka”, Dif. uravneniya, 26:2 (1990), 298–305 | MR | Zbl
[3] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl