On Radial Solutions of the Swift--Hohenberg Equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 188-209

Voir la notice de l'article provenant de la source Math-Net.Ru

We study radial solutions to the generalized Swift–Hohenberg equation on the plane with an additional quadratic term. We find stationary localized radial solutions that decay at infinity and solutions that tend to constants as the radius increases unboundedly (“droplets”). We formulate existence theorems for droplets and sketch the proofs employing the properties of the limit system as $r\to\infty$. This system is a Hamiltonian system corresponding to a spatially one-dimensional stationary Swift–Hohenberg equation. We analyze the properties of this system and also discuss concentric-wave-type solutions. All the results are obtained by combining the methods of the theory of dynamical systems, in particular, the theory of homo- and heteroclinic orbits, and numerical simulation.
@article{TM_2008_261_a13,
     author = {N. E. Kulagin and L. M. Lerman and T. G. Shmakova},
     title = {On {Radial} {Solutions} of the {Swift--Hohenberg} {Equation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {188--209},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a13/}
}
TY  - JOUR
AU  - N. E. Kulagin
AU  - L. M. Lerman
AU  - T. G. Shmakova
TI  - On Radial Solutions of the Swift--Hohenberg Equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 188
EP  - 209
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_261_a13/
LA  - ru
ID  - TM_2008_261_a13
ER  - 
%0 Journal Article
%A N. E. Kulagin
%A L. M. Lerman
%A T. G. Shmakova
%T On Radial Solutions of the Swift--Hohenberg Equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 188-209
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_261_a13/
%G ru
%F TM_2008_261_a13
N. E. Kulagin; L. M. Lerman; T. G. Shmakova. On Radial Solutions of the Swift--Hohenberg Equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 188-209. http://geodesic.mathdoc.fr/item/TM_2008_261_a13/