On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 7-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the $p$-Laplacian with variable exponent $p(x)$ bounded away from unity and infinity. We obtain a sufficient condition on $p(x)$ under which all solutions of the $p$-Laplace equation are continuous at a fixed point of a domain, and find an estimate for the modulus of continuity of solutions.
@article{TM_2008_261_a0,
author = {Yu. A. Alkhutov and O. V. Krasheninnikova},
title = {On the {Continuity} of {Solutions} to {Elliptic} {Equations} with {Variable} {Order} of {Nonlinearity}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {7--15},
publisher = {mathdoc},
volume = {261},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a0/}
}
TY - JOUR AU - Yu. A. Alkhutov AU - O. V. Krasheninnikova TI - On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 7 EP - 15 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_261_a0/ LA - ru ID - TM_2008_261_a0 ER -
%0 Journal Article %A Yu. A. Alkhutov %A O. V. Krasheninnikova %T On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 7-15 %V 261 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2008_261_a0/ %G ru %F TM_2008_261_a0
Yu. A. Alkhutov; O. V. Krasheninnikova. On the Continuity of Solutions to Elliptic Equations with Variable Order of Nonlinearity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 7-15. http://geodesic.mathdoc.fr/item/TM_2008_261_a0/