Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2008_260_a9, author = {M. L. Gol'dman}, title = {The {Cone} of {Rearrangements} for {Generalized} {Bessel} {Potentials}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {151--163}, publisher = {mathdoc}, volume = {260}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a9/} }
M. L. Gol'dman. The Cone of Rearrangements for Generalized Bessel Potentials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 151-163. http://geodesic.mathdoc.fr/item/TM_2008_260_a9/
[1] Analiz – 3, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 26, VINITI, M., 1988
[2] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[4] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[5] Bennett C., Sharpley R., Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | MR | Zbl
[6] Cianchi A., “A sharp embedding theorem for Orlicz–Sobolev spaces”, Indiana Univ. Math. J., 45:1 (1996), 39–65 | DOI | MR | Zbl
[7] Cianchi A., Pick L., “Sobolev embeddings into BMO, VMO and $L_\infty$”, Ark. Mat., 36:2 (1998), 317–340 | DOI | MR | Zbl
[8] Cwikel M., Pustylnik E., “Sobolev type embeddings in the limiting case”, J. Fourier Anal. and Appl., 4:4 (1998), 433–446 | DOI | MR | Zbl
[9] Pustylnik E. I., “Sobolev type inequalities in ultrasymmetric spaces with applications to Orlicz–Sobolev embeddings”, J. Funct. Spaces and Appl., 3:2 (2005), 183–208 | MR | Zbl
[10] Edmunds D., Kerman R., Pick L., “Optimal Sobolev imbeddings, involving rearrangement-invariant quasinorms”, J. Funct. Anal., 170:2 (2000), 307–355 | DOI | MR | Zbl
[11] Gogatishvili A., Neves J. S., Opic B., “Optimality of embeddings of Bessel-potential-type spaces”, Function spaces, differential operators and nonlinear analysis, Proc. Conf., Milovy, Czech Republ., May 28–June 2, 2004, Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 97–102
[12] Netrusov Yu. V., “Teoremy vlozheniya prostranstv Besova v idealnye prostranstva”, Zap. nauch. sem. LOMI, 159, Nauka, L., 1987, 69–82 | Zbl
[13] Netrusov Yu. V., “Teoremy vlozheniya prostranstv Lizorkina–Tribelya”, Zap. nauch. sem. LOMI, 159, Nauka, L., 1987, 103–112 | Zbl
[14] O'Neil R., “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR
[15] Kolyada V. I., “Rearrangements of functions and embedding of anisotropic spaces of Sobolev type”, East J. Approx., 4:2 (1998), 111–199 | MR | Zbl
[16] Kalyabin G. A., “Kharakterizatsiya prostranstv tipa Besova–Lizorkina–Tribelya s pomoschyu obobschennykh raznostei”, Tr. MIAN, 181, Nauka, M., 1988, 95–116 | MR
[17] Kalyabin G. A., Lizorkin P. I., “Spaces of functions of generalized smoothness”, Math. Nachr., 133 (1987), 7–32 | DOI | MR | Zbl
[18] Farkas W., Leopold H.-G., “Characterisations of function spaces of generalised smoothness”, Ann. Mat. Pura ed Appl., 185:1 (2006), 1–62 | DOI | MR | Zbl
[19] Haroske D., Limiting embeddings, entropy numbers and envelopes in function spaces, Habilitationsschrift, Univ. Jena, Jena, 2002
[20] Haroske D., Moura S., “Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers”, J. Approx. Theory, 128:2 (2004), 151–174 | DOI | MR | Zbl
[21] Goldman M. L., “O perestanovochno invariantnoi obolochke obobschennykh prostranstv Soboleva”, DAN, 405:1 (2005), 13–17 | MR
[22] Goldman M. L., “Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 53–81 | MR | Zbl
[23] Goldman M. L., “Integralnye svoistva obobschennykh besselevykh potentsialov”, DAN, 414:2 (2007), 159–164 | MR
[24] Carro M. J., Raposo J. A., Soria J., Recent developments in the theory of Lorentz spaces and weighted inequalities, Mem. AMS, 187, No 877, Amer. Math. Soc., Providence, RI, 2007 ; arXiv: /math/0010010 | MR