On Differential Inequalities with Point Singularities on the Boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 119-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the nonexistence of solutions for some nonlinear ordinary differential equations and inequalities, for quasilinear partial differential equations and inequalities in bounded domains with singular points on the boundary, and for systems of such equations and inequalities. The proofs are based on the method of nonlinear capacity. We also give examples demonstrating that the conditions obtained are sharp in the class of problems under consideration.
@article{TM_2008_260_a7,
     author = {E. I. Galakhov},
     title = {On {Differential} {Inequalities} with {Point} {Singularities} on the {Boundary}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a7/}
}
TY  - JOUR
AU  - E. I. Galakhov
TI  - On Differential Inequalities with Point Singularities on the Boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 119
EP  - 129
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a7/
LA  - ru
ID  - TM_2008_260_a7
ER  - 
%0 Journal Article
%A E. I. Galakhov
%T On Differential Inequalities with Point Singularities on the Boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 119-129
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a7/
%G ru
%F TM_2008_260_a7
E. I. Galakhov. On Differential Inequalities with Point Singularities on the Boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 119-129. http://geodesic.mathdoc.fr/item/TM_2008_260_a7/

[1] Demyanov A. V., Nazarov A. I., “O razreshimosti zadachi Dirikhle dlya polulineinogo uravneniya Shredingera s singulyarnym potentsialom”, Zap. nauch. sem. POMI, 336, POMI, SPb., 2006, 25–45 | MR

[2] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl

[3] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh neravenstv”, DAN, 359:4 (1998), 456–460 | MR | Zbl

[4] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya sistem kvazilineinykh ellipticheskikh uravnenii i neravenstv v $\mathbb R^N$”, DAN, 366:1 (1999), 13–17 | MR | Zbl

[5] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb R^N$”, Tr. MIAN, 227, Nauka, M., 1999, 192–222 | MR

[6] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR

[7] Khei Dzh., “O neobkhodimykh usloviyakh suschestvovaniya lokalnykh reshenii singulyarnykh obyknovennykh nelineinykh differentsialnykh uravnenii i neravenstv vysokogo poryadka”, DAN, 388:5 (2003), 599–603 | MR

[8] Khei Dzh., “O neobkhodimykh usloviyakh suschestvovaniya lokalnykh reshenii singulyarnykh nelineinykh obyknovennykh differentsialnykh uravnenii i neravenstv”, Mat. zametki, 72:6 (2002), 924–935 | MR

[9] Birindelli I., Mitidieri E., “Liouville theorems for elliptic inequalities and applications”, Proc. Roy. Soc. Edinburgh A, 128:6 (1998), 1217–1247 | MR | Zbl

[10] Brezis H., Cabré X., “Some simple nonlinear PDE's without solutions”, Boll. Unione mat. Ital. B: Artic. ric. mat., 1:2 (1998), 223–262 | MR | Zbl

[11] Vázquez J. L., “A strong maximum principle for some quasilinear elliptic equations”, Appl. Math. and Optim., 12 (1984), 191–202 | DOI | MR | Zbl