Liouville Theorems for Some Nonlinear Inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 97-118

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove various Liouville theorems for integral and differential inequalities on the whole $\mathbb R^N$. The main tools we use throughout this paper are representation formulae for linear inequalities, the nonlinear capacity method and the weak form of Harnack's inequality.
@article{TM_2008_260_a6,
     author = {G. Caristi and L. D'Ambrosio and E. Mitidieri},
     title = {Liouville {Theorems} for {Some} {Nonlinear} {Inequalities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--118},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a6/}
}
TY  - JOUR
AU  - G. Caristi
AU  - L. D'Ambrosio
AU  - E. Mitidieri
TI  - Liouville Theorems for Some Nonlinear Inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 97
EP  - 118
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a6/
LA  - en
ID  - TM_2008_260_a6
ER  - 
%0 Journal Article
%A G. Caristi
%A L. D'Ambrosio
%A E. Mitidieri
%T Liouville Theorems for Some Nonlinear Inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 97-118
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a6/
%G en
%F TM_2008_260_a6
G. Caristi; L. D'Ambrosio; E. Mitidieri. Liouville Theorems for Some Nonlinear Inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 97-118. http://geodesic.mathdoc.fr/item/TM_2008_260_a6/