Spectral Stability of the Robin Laplacian
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 75-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Robin Laplacian in two bounded regions $\Omega_1$ and $\Omega_2$ of $\mathbb R^N$ with Lipschitz boundaries and such that $\Omega_2\subset\Omega_1$, and we obtain two-sided estimates for the eigenvalues $\lambda_{n,2}$ of the Robin Laplacian in $\Omega_2$ via the eigenvalues $\lambda_{n,1}$ of the Robin Laplacian in $\Omega_1$. Our estimates depend on the measure of the set difference $\Omega_1\!\setminus\Omega_2$ and on suitably defined characteristics of vicinity of the boundaries $\partial\Omega_1$ and $\partial\Omega_2$, and of the functions defined on $\partial\Omega_1$ and on $\partial\Omega_2$ that enter the Robin boundary conditions.
@article{TM_2008_260_a5,
     author = {V. I. Burenkov and M. Lanza de Cristoforis},
     title = {Spectral {Stability} of the {Robin} {Laplacian}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {75--96},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a5/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - M. Lanza de Cristoforis
TI  - Spectral Stability of the Robin Laplacian
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 75
EP  - 96
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a5/
LA  - en
ID  - TM_2008_260_a5
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A M. Lanza de Cristoforis
%T Spectral Stability of the Robin Laplacian
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 75-96
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a5/
%G en
%F TM_2008_260_a5
V. I. Burenkov; M. Lanza de Cristoforis. Spectral Stability of the Robin Laplacian. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 75-96. http://geodesic.mathdoc.fr/item/TM_2008_260_a5/