Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2008_260_a5, author = {V. I. Burenkov and M. Lanza de Cristoforis}, title = {Spectral {Stability} of the {Robin} {Laplacian}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {75--96}, publisher = {mathdoc}, volume = {260}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a5/} }
V. I. Burenkov; M. Lanza de Cristoforis. Spectral Stability of the Robin Laplacian. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 75-96. http://geodesic.mathdoc.fr/item/TM_2008_260_a5/
[1] Burenkov V. I., Sobolev spaces on domains, B. G. Teubner, Stuttgart, 1998 | MR | Zbl
[2] Burenkov V. I., Davies E. B., “Spectral stability of the Neumann Laplacian”, J. Diff. Equat., 186:2 (2002), 485–508 | DOI | MR | Zbl
[3] Burenkov V. I., Lamberti P. D., “Spektralnaya ustoichivost neotritsatelnykh samosopryazhennykh operatorov”, DAN, 403:2 (2005), 159–164 | MR | Zbl
[4] Burenkov V. I., Lamberti P. D., “Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators”, J. Diff. Equat., 233:2 (2007), 345–379 | DOI | MR | Zbl
[5] Burenkov V. I., Lamberti P. D., Lantsa de Kristoforis M., “Spektralnaya ustoichivost neotritsatelnykh samosopryazhennykh operatorov”, Sovr. matematika. Fund. napr., 15 (2006), 76–111
[6] Davies E. B., Spectral theory and differential operators, Cambridge Stud. Adv. Math., 42, Cambridge Univ. Press, Cambridge, 1995 | MR
[7] Davies E. B., Heat kernels and spectral theory, Cambridge Tracts Math., 92, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[8] Deimling K., Nonlinear functional analysis, Springer–Verlag, Berlin etc., 1985 | MR | Zbl
[9] Lamberti P. D., Lanza de Cristoforis M., “A global Lipschitz continuity result for a domain-dependent Neumann eigenvalue problem for the Laplace operator”, J. Diff. Equat., 216:1 (2005), 109–133 | DOI | MR | Zbl
[10] Lieb E. H., Loss M., Analysis, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[11] Marcus M., Mizel V. J., “Absolute continuity on tracks and mappings of Sobolev spaces”, Arch. Ration. Mech. and Anal., 45 (1972), 294–320 | MR | Zbl
[12] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris, 1967 | MR | Zbl