Function Spaces of Lizorkin--Triebel Type on an Irregular Domain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 32-43

Voir la notice de l'article provenant de la source Math-Net.Ru

On an irregular domain $G\subset\mathbb R^n$ of a certain type, we introduce function spaces of fractional smoothness $s>0$ that are similar to the Lizorkin–Triebel spaces. We prove embedding theorems that show how these spaces are related to the Sobolev and Lebesgue spaces $W_p^m(G)$ and $L_p(G)$.
@article{TM_2008_260_a2,
     author = {O. V. Besov},
     title = {Function {Spaces} of {Lizorkin--Triebel} {Type} on an {Irregular} {Domain}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {32--43},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Function Spaces of Lizorkin--Triebel Type on an Irregular Domain
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 32
EP  - 43
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a2/
LA  - ru
ID  - TM_2008_260_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Function Spaces of Lizorkin--Triebel Type on an Irregular Domain
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 32-43
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a2/
%G ru
%F TM_2008_260_a2
O. V. Besov. Function Spaces of Lizorkin--Triebel Type on an Irregular Domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 32-43. http://geodesic.mathdoc.fr/item/TM_2008_260_a2/