Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 297-319

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the embedding of a Sobolev space in Lebesgue spaces on a domain depend on the integrability and smoothness parameters of the spaces and on the geometric features of the domain. In the present paper, Sobolev embedding theorems are obtained for a class of domains with irregular boundary; this class includes the well-known classes of $\sigma$-John domains, domains with the flexible cone condition, and their anisotropic analogs.
@article{TM_2008_260_a19,
     author = {Boris V. Trushin},
     title = {Sobolev {Embedding} {Theorems} for {a~Class} of {Anisotropic} {Irregular} {Domains}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {297--319},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a19/}
}
TY  - JOUR
AU  - Boris V. Trushin
TI  - Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 297
EP  - 319
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a19/
LA  - ru
ID  - TM_2008_260_a19
ER  - 
%0 Journal Article
%A Boris V. Trushin
%T Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 297-319
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a19/
%G ru
%F TM_2008_260_a19
Boris V. Trushin. Sobolev Embedding Theorems for a~Class of Anisotropic Irregular Domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 297-319. http://geodesic.mathdoc.fr/item/TM_2008_260_a19/