On the Approximation of Differentiable Functions by Bernstein Polynomials and Kantorovich Polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 289-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

E. V. Voronovskaya and S. N. Bernstein established an asymptotic representation for the deviation of functions from Bernstein polynomials under the condition that the function has an even-order derivative. In the present paper, a similar problem is solved in the case when the function has an odd-order derivative. In addition, analogous representations are obtained for the deviations of functions from Kantorovich polynomials.
@article{TM_2008_260_a18,
     author = {S. A. Telyakovskii},
     title = {On the {Approximation} of {Differentiable} {Functions} by {Bernstein} {Polynomials} and {Kantorovich} {Polynomials}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {289--296},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a18/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - On the Approximation of Differentiable Functions by Bernstein Polynomials and Kantorovich Polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 289
EP  - 296
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a18/
LA  - ru
ID  - TM_2008_260_a18
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T On the Approximation of Differentiable Functions by Bernstein Polynomials and Kantorovich Polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 289-296
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a18/
%G ru
%F TM_2008_260_a18
S. A. Telyakovskii. On the Approximation of Differentiable Functions by Bernstein Polynomials and Kantorovich Polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 289-296. http://geodesic.mathdoc.fr/item/TM_2008_260_a18/

[1] Voronovskaya E. V., “Opredelenie asimptoticheskogo vida priblizheniya funktsii polinomami S. N. Bernshteina”, DAN SSSR A, 4 (1932), 79–85 | Zbl

[2] Bernstein S., “Complément à l'article de E. Voronovskaya ‘Détermiation de la forme asymptotique de l’approximation des fonctions par les polynômes de M. Bernstein' ”, DAN SSSR A, 4 (1932), 86–92 | Zbl

[3] Lorentz G. G., Bernstein polynomials, Chelsea Publ., New York, 1986 | MR

[4] DeVore R. A., Lorentz G. G., Constructive approximation, Springer–Verlag, Berlin, 1993 | MR

[5] Ivanov K. G., “On Bernstein polynomials”, Dokl. Bolg. AN, 35 (1982), 893–896 | MR | Zbl