On the Geometric Mean Operator with Variable Limits of Integration
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 264-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new criterion for the weighted $L_p$$L_q$ boundedness of the Hardy operator with two variable limits of integration is obtained for $0$. This criterion is applied to the characterization of the weighted $L_p$$L_q$ boundedness of the corresponding geometric mean operator for $0$.
@article{TM_2008_260_a17,
     author = {V. D. Stepanov and E. P. Ushakova},
     title = {On the {Geometric} {Mean} {Operator} with {Variable} {Limits} of {Integration}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {264--288},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a17/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - E. P. Ushakova
TI  - On the Geometric Mean Operator with Variable Limits of Integration
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 264
EP  - 288
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a17/
LA  - ru
ID  - TM_2008_260_a17
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A E. P. Ushakova
%T On the Geometric Mean Operator with Variable Limits of Integration
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 264-288
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a17/
%G ru
%F TM_2008_260_a17
V. D. Stepanov; E. P. Ushakova. On the Geometric Mean Operator with Variable Limits of Integration. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 264-288. http://geodesic.mathdoc.fr/item/TM_2008_260_a17/

[1] Chen T., Sinnamon G., “Generalized Hardy operators and normalizing measures”, J. Inequal. and Appl., 7:6 (2002), 829–866 | DOI | MR | Zbl

[2] Heinig H. P., Sinnamon G., “Mapping properties of integral averaging operators”, Stud. math., 129:2 (1998), 157–177 | MR | Zbl

[3] Gogatishvili A., Lang J., “The generalized Hardy operators with kernel and variable integral limits in Banach function spaces”, J. Inequal. and Appl., 4:1 (1999), 1–16 | DOI | MR | Zbl

[4] Nassyrova M., Persson L.-E., Stepanov V., “On weighted inequalities with geometric mean operator generated by the Hardy-type integral transform”, J. Inequal. Pure and Appl. Math., 3:4 (2002), Pap. 48 | MR | Zbl

[5] Persson L.-E., Prokhorov D., “Integral inequalities for some weighted geometric mean operators with variable limits”, Arch. Inequal. and Appl., 2:4 (2004), 475–482 | MR | Zbl

[6] Persson L.-E., Stepanov V. D., “Weighted integral inequalities with the geometric mean operator”, J. Inequal. and Appl., 7:5 (2002), 727–746 | DOI | MR | Zbl

[7] Sinnamon G., Stepanov V. D., “The weighted Hardy inequality: New proofs and the case $p=1$”, J. London Math. Soc., 54:1 (1996), 89–101 | MR | Zbl

[8] Stepanov V. D., Ushakova E. P., “Ob integralnykh operatorakh s peremennymi predelami integrirovaniya”, Tr. MIAN, 232, Nauka, M., 2001, 298–317 | MR | Zbl

[9] Stepanov V. D., Ushakova E. P., “Hardy operator with variable limits on monotone functions”, J. Funct. Spaces and Appl., 1:1 (2003), 1–15 | MR | Zbl