Conditions for the Existence of a~Global Strong Solution to a~Class of Nonlinear Evolution Equations in a~Hilbert Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 202-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a nonlinear operator differential equation in a Hilbert space. This equation represents an abstract model for the system of Navier–Stokes equations. The main result consists in proving the existence of a strong solution to this equation under the condition that a certain other system of equations (related to the original equation) has only the zero solution.
@article{TM_2008_260_a13,
     author = {M. Otelbaev and A. A. Durmagambetov and E. N. Seitkulov},
     title = {Conditions for the {Existence} of {a~Global} {Strong} {Solution} to {a~Class} of {Nonlinear} {Evolution} {Equations} in {a~Hilbert} {Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {202--212},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a13/}
}
TY  - JOUR
AU  - M. Otelbaev
AU  - A. A. Durmagambetov
AU  - E. N. Seitkulov
TI  - Conditions for the Existence of a~Global Strong Solution to a~Class of Nonlinear Evolution Equations in a~Hilbert Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 202
EP  - 212
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a13/
LA  - ru
ID  - TM_2008_260_a13
ER  - 
%0 Journal Article
%A M. Otelbaev
%A A. A. Durmagambetov
%A E. N. Seitkulov
%T Conditions for the Existence of a~Global Strong Solution to a~Class of Nonlinear Evolution Equations in a~Hilbert Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 202-212
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a13/
%G ru
%F TM_2008_260_a13
M. Otelbaev; A. A. Durmagambetov; E. N. Seitkulov. Conditions for the Existence of a~Global Strong Solution to a~Class of Nonlinear Evolution Equations in a~Hilbert Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 202-212. http://geodesic.mathdoc.fr/item/TM_2008_260_a13/

[1] Otelbaev M., Durmagambetov A. A., Seitkulov E. N., “Usloviya suschestvovaniya silnogo resheniya v tselom odnogo klassa nelineinykh evolyutsionnykh uravnenii v gilbertovom prostranstve”, Sib. mat. zhurn., 49:3 (2008), 620–634 | MR | Zbl

[2] Khermander L., Otsenki dlya operatorov, invariantnykh otnositelno sdviga, Izd-vo inostr. lit., M., 1962

[3] Solonnikov V. A., “Otsenki reshenii nestatsionarnoi linearizovannoi sistemy uravnenii Nave–Stoksa”, Tr. MIAN, 70, Nauka, M., 1964, 213–317 | MR

[4] Solonnikov V. A., “O differentsialnykh svoistvakh reshenii pervoi kraevoi zadachi dlya nestatsionarnoi sistemy uravnenii Nave–Stoksa”, Tr. MIAN, 73, Nauka, M., 1964, 221–291 | MR

[5] Otelbaev M., Durmagambetov A. A., Seitkulov E. N., “Usloviya suschestvovaniya silnogo resheniya v tselom odnogo klassa nelineinykh evolyutsionnykh uravnenii v gilbertovom prostranstve”, DAN, 408:4 (2006), 446–449 | MR