Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2007_259_a9, author = {S. M. Natanzon}, title = {Singularities and {Noncommutative} {Frobenius} {Manifolds}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {143--155}, publisher = {mathdoc}, volume = {259}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a9/} }
S. M. Natanzon. Singularities and Noncommutative Frobenius Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 143-155. http://geodesic.mathdoc.fr/item/TM_2007_259_a9/
[1] Alexeevski A., Natanzon S., Non-commutative extensions of two-dimensional topological field theories and Hurwitz numbers for real algebraic curves, E-print, 2002; arXiv: /math.GT/0202164
[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. I: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 ; II: Монодромия и асимптотики интегралов, Наука, М., 1984 | MR
[3] Atiyah M., “Topological quantum field theories”, Publ. Math. IHES, 68 (1988), 175–186 | MR | Zbl
[4] Dijkgraaf R., Geometrical approach to two-dimensional conformal field theory, Ph.D. Thes., Utrecht, 1989 | Zbl
[5] Dijkgraaf R., Verlinde E., Verlinde H., “Topological strings in $d1$”, Nucl. Phys. B, 352 (1991), 59–86 | DOI | MR
[6] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | MR | Zbl
[7] Faith C., Algebra: rings, modules and categories.I, Heidelberg, Berlin; Springer, New York, 1973 | MR | Zbl
[8] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Commun. Math. Phys., 164 (1994), 525–562 | DOI | MR | Zbl
[9] Lazaroiu C. I., “On the structure of open–closed topological field theory in two dimensions”, Nucl. Phys. B, 603 (2001), 497–530 | DOI | MR | Zbl
[10] Manin Yu. I., Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Faktorial, M., 2002
[11] Moor G., D-branes, RR-fields and K-theory. II, http://online.itp.ucsb.edu/online/mp01/moore2/
[12] Natanzon S. M., Structures de Dubrovin, Preprint 1997/26, Inst. Rech. Math. Avancée, Strasbourg, 1997
[13] Natanzon S. M., “Formulas for $A_n$- and $B_n$-solutions of WDVV equations”, J. Geom. and Phys., 39 (2001), 323–336 | DOI | MR | Zbl
[14] Natanzon S. M., “Extended cohomological field theories and noncommutative Frobenius manifolds”, J. Geom. and Phys., 51 (2003), 387–403 | DOI | MR
[15] Saito K., “On a linear structure of a quotient variety by a finite reflection group”, Publ. RIMS, 29:4 (1993), 535–579 | DOI | MR | Zbl
[16] Turaev V., Homotopy field theory in dimension 2 and group-algebras, E-print, 1999
[17] Vafa C., “Topological Landau–Ginzburg models”, Mod. Phys. Lett. A, 6:4 (1991), 337–346 | DOI | MR | Zbl
[18] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B, 340 (1990), 281–332 | DOI | MR