@article{TM_2007_259_a8,
author = {S. B. Kuksin},
title = {Eulerian {Limit} for {2D} {Navier{\textendash}Stokes} {Equation} and {Damped/Driven} {KdV} {Equation} as {Its} {Model}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {134--142},
year = {2007},
volume = {259},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a8/}
}
TY - JOUR AU - S. B. Kuksin TI - Eulerian Limit for 2D Navier–Stokes Equation and Damped/Driven KdV Equation as Its Model JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 134 EP - 142 VL - 259 UR - http://geodesic.mathdoc.fr/item/TM_2007_259_a8/ LA - en ID - TM_2007_259_a8 ER -
S. B. Kuksin. Eulerian Limit for 2D Navier–Stokes Equation and Damped/Driven KdV Equation as Its Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 134-142. http://geodesic.mathdoc.fr/item/TM_2007_259_a8/
[1] Arnold V. I., Khesin B. A., Topological methods in hydrodynamics, Springer, New York, 1998 | MR
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 2-e izd., Nauka, M., 1979 | MR
[3] Beale J. T., Kato T., Majda A., “Remarks on the breakdown of smooth solutions for the 3-D Euler equations”, Commun. Math. Phys., 94 (1984), 61–66 | DOI | MR | Zbl
[4] Bourbaki N., Élémentes de mathématique, XXV. Pt. 1. Livre 6: Intégration. Ch. 6: Intégration vectorielle, Hermann, Paris, 1959 | Zbl
[5] Dudley R. M., Real analysis and probability, Cambridge Univ. Press, Cambridge, 2002 | MR
[6] Kappeler T., Pöschel J., KdV KAM, Springer, Berlin, 2003 | MR
[7] Kuksin S. B., Piatnitski A. L., Khasminskii–Whitham averaging for randomly perturbed KdV equation, Preprint, 2006 ; http://www.ma.hw.ac.uk/~kuksin/rfpdef/kuk\textunderscore pia.pdf | MR
[8] Kuksin S. B., “The Eulerian limit for 2D statistical hydrodynamics”, J. Stat. Phys., 115 (2004), 469–492 | DOI | MR | Zbl
[9] Kuksin S. B., Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions, Eur. Math. Soc., Zürich, 2006 ; mp\textunderscore arc 06-178 | MR | Zbl
[10] McKean H. P., Trubowitz E., “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Commun. Pure and Appl. Math., 29 (1976), 143–226 | DOI | MR | Zbl