New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 106-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out a detailed analysis of the existence, asymptotics, and stability problems for periodic solutions that bifurcate from the zero equilibrium state in systems with large delay. The account is based on a specific meaningful example given by a certain scalar nonlinear second-order differential–difference equation that is a mathematical model of a single-circuit $RCL$-oscillator with delay in a feedback loop.
@article{TM_2007_259_a7,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {New {Methods} for {Proving} the {Existence} and {Stability} of {Periodic} {Solutions} in {Singularly} {Perturbed} {Delay} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {106--133},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a7/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 106
EP  - 133
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_259_a7/
LA  - ru
ID  - TM_2007_259_a7
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 106-133
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_259_a7/
%G ru
%F TM_2007_259_a7
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 106-133. http://geodesic.mathdoc.fr/item/TM_2007_259_a7/

[1] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Tr. MIAN, 222, Nauka, M., 1998

[2] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v $RCLG$-avtogeneratore: teoreticheskii analiz i rezultaty eksperimenta”, Tr. MIAN, 233 (2001), 153–207 | MR | Zbl

[3] Strelkov S. P., Vvedenie v teoriyu kolebanii, Nauka, M., 1964 | MR | Zbl

[4] Azyan Yu. M., Migulin V. V., “Ob avtokolebaniyakh v sisteme s zapazdyvayuschei obratnoi svyazyu”, Radiotekhnika i elektronika, 1:4 (1956), 418–427

[5] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[6] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[7] Mischenko E. F., Kolesov Yu. C., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[8] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004 | Zbl

[9] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[10] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Dif. uravneniya, 25:8 (1989), 1448–1451 | MR | Zbl

[11] Kaschenko S. A., “Uravnenie Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, ZhVMiMF, 38:3 (1998), 457–465 | MR | Zbl

[12] Vasileva A. B., Kaschenko S. A., Kolesov Yu. C., Rozov N. Kh., “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Mat. sb., 130:4 (1986), 488–499 | MR

[13] Hale J. K., Huang W., “Square and pulse waves in matrix delay differential equations”, Dyn. Syst. and Appl., 1:1 (1992), 51–70 | MR | Zbl

[14] Kolesov Yu. C., Shvitra D. I., Avtokolebaniya v sistemakh s zapazdyvaniem, Mokslas, Vilnyus, 1979 | MR | Zbl

[15] Kolesov Yu. C., “Matematicheskie modeli ekologii”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1979, 3–40 | MR | Zbl

[16] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005

[17] Kubyshkin E. P., “Parametricheskii rezonans v lineinykh periodicheskikh sistemakh s posledeistviem”, Issledovaniya po ustoichivosti i teorii kolebanii, Yar\nobreak GU, Yaroslavl, 1978, 43–76 | MR | Zbl

[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl