Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2007_259_a15, author = {V. M. Zakalyukin}, title = {Quasi-projections}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {282--290}, publisher = {mathdoc}, volume = {259}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a15/} }
V. M. Zakalyukin. Quasi-projections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 282-290. http://geodesic.mathdoc.fr/item/TM_2007_259_a15/
[1] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., “Osobennosti. II: Klassifikatsiya i prilozheniya”, Dinamicheskie sistemy - 8, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 39, VINITI, M., 1989, 5–249 | MR
[2] Golubitsky M., Schaeffer D., “A theory for imperfect bifurcation via singularity theory”, Commun. Pure and Appl. Math., 32:1 (1979), 21–98 | DOI | MR | Zbl
[3] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR
[4] Damon J., “$\mathcal A$-equivalence and the equivalence of sections of images and discriminants”, Singularity theory and its applications, Pt. 1 (Warwick, 1989), Lect. Notes Math., 1462, Springer, Berlin, 1991, 93–121 | MR
[5] Goryunov V. V., “Osobennosti proektirovanii polnykh peresechenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983, 167–206 | MR
[6] Zakalyukin V. M., “Quasi-boundary singularities”, Geometry and topology of caustics – Caustics'06, Banach Center Publ., Pol. Acad. Sci., Warsaw, 2008 | MR