Quasi-projections
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 282-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify simple singularities of projections to a plane of surfaces embedded in three-space up to a special equivalence relation which is rougher than the standard one. A relation to the simple boundary classes $B$, $C$, and $F$ is established.
@article{TM_2007_259_a15,
     author = {V. M. Zakalyukin},
     title = {Quasi-projections},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {282--290},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a15/}
}
TY  - JOUR
AU  - V. M. Zakalyukin
TI  - Quasi-projections
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 282
EP  - 290
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_259_a15/
LA  - ru
ID  - TM_2007_259_a15
ER  - 
%0 Journal Article
%A V. M. Zakalyukin
%T Quasi-projections
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 282-290
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_259_a15/
%G ru
%F TM_2007_259_a15
V. M. Zakalyukin. Quasi-projections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 282-290. http://geodesic.mathdoc.fr/item/TM_2007_259_a15/

[1] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., “Osobennosti. II: Klassifikatsiya i prilozheniya”, Dinamicheskie sistemy - 8, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 39, VINITI, M., 1989, 5–249 | MR

[2] Golubitsky M., Schaeffer D., “A theory for imperfect bifurcation via singularity theory”, Commun. Pure and Appl. Math., 32:1 (1979), 21–98 | DOI | MR | Zbl

[3] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR

[4] Damon J., “$\mathcal A$-equivalence and the equivalence of sections of images and discriminants”, Singularity theory and its applications, Pt. 1 (Warwick, 1989), Lect. Notes Math., 1462, Springer, Berlin, 1991, 93–121 | MR

[5] Goryunov V. V., “Osobennosti proektirovanii polnykh peresechenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983, 167–206 | MR

[6] Zakalyukin V. M., “Quasi-boundary singularities”, Geometry and topology of caustics – Caustics'06, Banach Center Publ., Pol. Acad. Sci., Warsaw, 2008 | MR