Noncommutative Structures
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 203-242
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a method for constructing noncommutative analogs of objects from classical calculus, differential geometry, topology, dynamical systems, etc. The standard (commutative) objects can be obtained from noncommutative ones by natural projections (a set of canonical homomorphisms). The approach is ideologically close to the noncommutative geometry of A. Connes but differs from it in technical details.
@article{TM_2007_259_a12,
author = {D. V. Treschev},
title = {Noncommutative {Structures}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {203--242},
year = {2007},
volume = {259},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a12/}
}
D. V. Treschev. Noncommutative Structures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 203-242. http://geodesic.mathdoc.fr/item/TM_2007_259_a12/
[1] Chevalley C., Eilenberg S., “Cohomology theory of Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl
[2] Connes A., Noncommutative geometry, Acad. Press, London, San Diego, 1994 | MR | Zbl
[3] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl
[4] Treschev D. V., “Kvantovye nablyudaemye: algebraicheskii aspekt”, Tr. MIAN, 250 (2005), 226–261 | Zbl